Smart® Products **Technical Booklet** March 2020

- Smart® Band
- Smart® Tie
- Smart[®] Installation Tools

The following booklet gives technical information relating to the use of HCL **Smart**[®] products in downhole and drilling applications.

Please note that HCL are committed to an ongoing test program for all products and issue updated versions of this Technical Booklet from time to time. Please refer to the website or contact HCL directly for the latest version. Should you require any information outside the scope of this booklet, please contact HCL directly.

1] Smart[®] Product Guide

- 1.1] Banding Choice
- 1.2] Smart[®] Protector Choice
- 1.3] Application
- 1.4] Material Choice

Technical

2] Dimensions and Weights

- 2.1] Smart® Tie Dimensions and Weights
- 2.2] Smart[®] Band Dimensions and Weights
- 2.3] Smart[®] Band Compact Dimensions and Weights
- 2.4] Smart® Protector Dimensions and Weights

Installation

3] Design Guidelines

- 3.1] Buckle Location
- 3.2] Recess Dimensions
- 3.3] Smart[®] Protector Location
- 3.4] Downhole Snagging Prevention

4] Fitting Tools

4.1] SM-FT-20004.2] SM-FT-1000 Supplied with torque wrench4.3] SM-FT-3000 Pneumatic

Performance

5] Tensile Strength

- 5.1] System Tensile Tests Introduction
- 5.2] Smart® Tie System Tensile Tests
- 5.3] Smart[®] Band System Tensile Tests Standard Buckle
- 5.4] Smart[®] Band System Tensile Tests Hybrid Buckle
- 5.5] Smart® Band Compact System Tensile Tests

6] Creep and Stress Relaxation

6.1] Stress Relaxation

7] Axial Retention

- 7.1] Banding Axial Retention
- 7.2] Banding and Smart[®] Protector Assembly Axial Retention

8] Roller Testing

9] Impact Strength

9.1] Smart[®] Band Impact Strength 9.2] Smart[®] Protector Impact Strength

10] Half Shell Minimum Bending Radius

Smart[®] Products Technical

11] Piggyback Pipe Lay

PATENTE

11.1] Smart[®] Band Piggyback Performance

12] Hydrostatic Compression

12.1] Typical Hydrostatic Compression Test Simulation

13] Abrasion

13.1] Polymer Abrasion Comparison13.2] Downhole Smart[®] Protector Abrasion

14] Marine Growth

Material

15] Temperature Resistance and Flammability

16] Material Properties

16.1] Polymer Mechanical Properties16.2] Glass Fibre Yarn – Ø1mm Material Properties

17] Chemical Resistance

- 17.1] Chemical Resistance Overview
- 17.2] Permeability
- 17.3] Chemical Resistance Chart

18] Ageing

- 18.1] Ageing in Water (pH7)
- 18.2] Hot Ageing in Air
- 18.3] Fresh Water Immersion
- 18.4] Oil Immersion (Mineral Oil Isovoltine at 110°C)
- 18.5] CO₂ (Carbon Dioxide) and
 - $H_2 \hat{S}$ (Hydrogen Sulphide) and NORSOK M-710

19] Weathering

- 19.1] PA66
 - 19.2] POM (Acetal)
 - 19.3] Weathering Comparison for PA12 and PA1
- 19.4] PK
- 19.5] PPS
- 19.6] PEEK

20.1] Advantages of Polymer Products

Quality

0

21] Quality

21.1] Test Validation 21.2] Quality Control

Introduction

Where applicable product testing has been witnessed and approved by SGS Verification Services.

This section gives guidance when choosing the right Smart[®] product for your application. The following factors should be taken into consideration:

- Temperature
- Chemical resistance
- Weathering
- Toughness
- Cost
- Flammability
- Axial retention required
- Tensile strength & weight of cable
- Cable size
- Pipe OD and casing ID

If there is any doubt about the polymer choice and use of the product in a downhole or subsea application then trials should be carried out to ensure suitability. For further guidance and advice contact HCL.

1.1] Banding Choice

The following table provides a simple overview of available Smart products, their size and material variations. Fitting tools that compliment each product are listed for reference.

*Please note. Figures stated are for material in the Dry As Moulded (DAM) State. Tests are carried out around steel half shells and recorded using Tensile test equipment.

Size		Band Dimensions			Material	Options	System Strength*	
Banding Product	Options	Nominal Length mm [m] {Ft}	Width mm (inches)	Thickness mm (inches)	Buckle	Band	N (kgf) [lbf]	Fitting Tool Options
					PA	66	5030 (513) [1128]	
	20mm	450 600	20	3.6	PA	12	4061 (414) [911]	SM-FT-1000-20ST SM-FT-2000-19
	(3/4 '')	750	(0.79)	(0.14)	P	K	5440 (565) [1220]	SM-FT-3000-20ST
Smart® Tie					PF	PS	5039 (514) [1130]	
					PA	12	9650 (984) [2169]	SM-FT-1000-32ST
	32mm (1¼″)	550 850	32 (1.26)	4.6 - (0.18) -	P	K	12470 (1270) [2800]	SM-FT-2000-32
	(1/4)	000	(1.20)	(0.10)	PF	rs	11990 (1223) [2695]	SM-FT-3000-32ST
	7mm (1⁄4″)	[30] {100} [250] {820}	7.0 (0.28)	2.8 (0.11)	PA	66	880 (90) [197]	SM-TA-528A
Smart [®] Band	10mm	[30] {100}	9.8	3.6	PA	66	1734 (177) [390]	014 74 5004
Standard	(3/8")	[125] {410}	(0.39)	(0.14)	PA	12	1246 (127) [280]	SM-TA-528A
	19mm (¾″)	[30] {100}	19.2	2 3.6	PA	66	4310 (439) [967]	SM-FT-1000-19
		[60] {200}	(0.76)	(0.14)	PA66	POM	4100 (418) [919]	SM-FT-2000-19
					PA	66	13430 (1369) [3012]	SM-FT-1000-19
	19mm (¾″)	[30] {100} [60] {200}	19.2 (0.76)	3.6 - (0.14) -	PC	M	9980 (1017) [2238]	SM-FT-2000-19
Smart® Band Hybrid	(/4)	[00] [200]	(0.70)	(0.14)	PA1	2GF	12950 (1321) [2911]	SM-FT-3000-19
i yona	32mm	[20] (100)	32.2	4.7	PC	M	17200 (1753) [3857]	SM-FT-1000-32 SM-FT-2000-32
	(11⁄4″)	[30] {100}	(1.27)	(0.19)	PA12GF		22980 (2344) [5166]	SM-FT-2000-32
Smart® Band	19mm (¾″)	Uses Defined	19.2 (0.76)	3.6 (0.14)	DA1	005	13495 (1376) [3034]	SM-FT-1000-19 SM-FT-2000-19 SM-FT-3000-19
Compact	32mm (1¼″)	User Defined	32.2 (1.27)	4.7 (0.19)	PA1	2ur —	24984 (2548) [5617]	SM-FT-1000-32 SM-FT-2000-32 SM-FT-3000-32

1.2] Smart[®] Protector Choice

The following table gives measurements for each Smart[®] Protector to help in choosing the most suitable size for the cable selection.

SP Size	Cable Recess 1	Cable Recess 2	Cable Recess 3		
SP-100	1 x ¼″	1 x 1/8″	1 x 2mm		
SP-100-2	2 x ¼″	2 x ¼″			
SP-200	1 x 11mm Square or round (nominal)	1 x 11mm Square or round (nominal)			
SP-200-3/8	1 x ¾″ Square or round (nominal)				
SP-300	2 x 11mm square or round (nominal)	2 x 11mm square or round (nominal) 2 x ¼"			
SP-400-3820	1 x Flat ESP 38mm wide x 20mm height4	1 x Flat ESP 38mm wide x 20mm height₄			
SP-400-5228	1 x Flat ESP 52mm wide x 20mm height₄				
SP-500-1721	1 x 17-21mm round				
SP-500-3338	1 x 33-38mm round				

⁴The dimension for height will be reduced as the pipe diameter reduces due to the outer pipe surface encroaching into the cable recess.

1.3] Application

The following table gives the HCL recommended products and material choice for certain applications based on the latest engineering polymers available. The applications below are just a few of many – Please contact HCL for further information and recommendations for your particular application.

Application	Smart [®] Tie	Smart [®] Band	Smart [®] Protector	Material Choice
GENERAL OUTDOORS				
General fixing e.g. signs	\checkmark	\checkmark	X	PA66
Cable Management	\checkmark	\checkmark	\checkmark	PA66
Sensor Fixing	\checkmark	\checkmark	\checkmark	PA66
DOWNHOLE				
Downhole clamping and cable protection up to 125°C (257°F)	\checkmark	Compact	\checkmark	PK
Downhole clamping and cable protection up to 175°C (347°F)	\checkmark	Compact	\checkmark	PPS
Downhole clamping and cable protection up to 250°C (482°F)	X	Compact	\checkmark	PEEK
CORROSION				
Pile Wrap – Standard	X	Hybrid	X	POM
Pile Wrap – Premium	X	Hybrid	X	PA12GF
Sacrificial Anode Clamping	X	Hybrid/Compact	\checkmark	PA12GF
mpressed Current Cathodic Protection Clamping	X	Hybrid/Compact	\checkmark	PA12GF
SUBSEA				
Cable Protection	\checkmark	Compact	×	PK & PA12GF
Piggyback Saddle	X	Compact	X	PA12GF
Strakes	X	Compact	X	PA12GF
Cable Management	\checkmark	Hybrid/Compact	\checkmark	PK & PA12GF
Sensor Fixing	\checkmark	Hybrid/Compact	1	PK & PA12GF

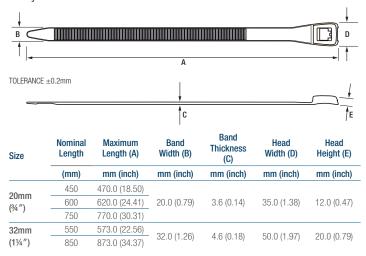
1.4] Material Choice

Characteristic	Units	PA66 Polyamide66 (Nylon66)	POM Polyoxymethylene (Acetal)	PA12 Polyamide12 (Nylon12)	PA12GF Polyamide12GF (Nylon12 Glass Filled)	PK Polyketone	PPS Polyfenylene Sulfide	PEEK Polyetherether-ketone	Detailed Section No
Recommended for Downhole Use		√ 1	X	\checkmark	N/A	\checkmark	\checkmark	\checkmark	
Recommended for Subsea Use		√ 1	\checkmark	\checkmark	\checkmark	\checkmark	√ 2	√ 2	
Maximum Temperature ¹	°C (°F)	125 (257)	95 (203)	100 (212)	100 (212)	125 (257)	175 (347)	250 (482)	15
Flammability	UL94	V-2	HB	HB	HB	HB	V-0	V-0	15
General Chemical Resistance	Scale 1-10	3	3	5	5	7	9	10	17
Sour (CO ₂) & Sweet (H ₂ S) Gas Resistance	Scale 1-10	3	N/A	5	5	7	9	10	17
General Weathering & UV Resistance ³	Scale 1-10	7	5	10	10	4	6	4	19
Strength	Scale 1-10	74	5	6	9	8	9	10	5
Toughness	Scale 1-10	85	5	9	9	9	7	7	9 & 16
Density	g/cm ³ (oz/inch ³)	1.14 (0.66)	1.41 (0.82)	1.01 (0.58)	1.22 (0.71)	1.24 (0.72)	1.25 (0.72)	1.30 (0.75)	16
Cost (Low to High)	Scale 1-10	2	2	4	4	3	7	10	

¹ Stated temperatures are based on the tensile half-life, e.g. elongation, of the material measured in a controlled environment. Other factors, e.g. the presence of chemicals, may significantly reduce this value.

² Recommended for high temperature subsea applications

³ Applicable to black product


⁴ Strength reduces due to hygroscopic properties if permenantly immersed in water ⁵ Toughness increases due to hydroscopic properties if permenantly immersed in water

Conclusion

 As a general point the higher the temperature resistance the better the chemical resistance.

2] Dimensions and Weights 2.1] Smart[®] Tie Dimensions and Weights

2.1.1] Smart® Tie Dimensions

- Where traditonally PA11GF has been used in Smart[®] Band Subsea applications PA12GF is now the recommended polymer for use in long life subsea applications.
- Where traditionally PA12 has been used in downhole applications PK is now being recommended giving better performance as well as cost effectivness.
- Where cost is critical PA66 can be used for short term subsea applications but because PA66 is noticeably hygroscopic, tensions will reduce over time in a wet environment.

2.1.2] Smart® Tie Weight and Density Table

0:	Nominal Length	Material	Weight	Average Density*
Size	(mm)	Material	g (oz)	g/cm ³ (oz/inch ³)
		PA66	39.5 (1.39)	1.15 (0.66)
	450	PA12	34.6 (1.22)	1.04 (0.60)
	450 —	PK	42.4 (1.50)	1.24 (0.71)
	_	PPS	43.1 (1.52)	1.26 (0.73)
		PA66	49.2 (1.74)	1.15 (0.66)
20mm	-	PA12	43.1 (1.52)	1.04 (0.60)
(¾″)	600 —	PK	52.8 (1.86)	1.24 (0.71)
	_	PPS	53.7 (1.90)	1.26 (0.73)
-		PA66	59.7 (2.11)	1.15 (0.66)
	750	PA12	52.3 (1.85)	1.04 (0.60)
	/ 50	PK	65.1 (2.30)	1.24 (0.71)
	_	PPS	65.1 (2.30)	1.26 (0.73)
		PA66	96.1 (3.39)	1.15 (0.66)
		PA12	86.9 (3.07)	1.04 (0.60)
	550 —	PK	103.6 (3.66)	1.24 (0.71)
32mm		PPS	105.3 (3.72)	1.26 (0.73)
		PA66	139.9 (4.94)	1.15 (0.66)
	950	PA12	126.5 (4.47)	1.04 (0.60)
	850 —	PK	156.5 (5.52)	1.24 (0.71)
		PPS	153.3 (5.41)	1.26 (0.73)

*Average Density is calculated from the assembled Smart® Tie components. This comprises of the strap and the toothed latch insert.

2.2] Smart[®] Band Dimensions and Weights

2.2.1] Band Dimensions

0:	Maximum Width (A)	Maximum Thickness (B)	
Size —	mm (inch)	mm (inch)	
7mm (¼″)	6.9 (0.27)	2.6 (0.10)	
10mm (¾″)	9.8 (0.39)	3.6 (0.14)	
19mm (¾ ″)	19.2 (0.76)	3.6 (0.14)	
32mm (1¼″)	32.2 (1.27)	4.7. (0.19)	

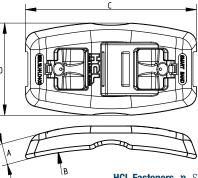
2.2.2] Band Weight and Density Table

Size	Material	No of Glass	Weight/Length	Average Density*
5120	Material	Cords	g/m (oz/ft)	g/cm ³ (oz/inch ³)
7mm (¼″)	PA66	3	17 (0.60)	1.14 (0.66)
10mm (¾″)	PA66	2	30 (0.32)	1.15 (0.66)
	PA12	2	28 (0.30)	1.25 (0.72)
	PA66		70 (0.75)	1.23 (0.71)
19mm (¾″)	POM	11	80 (0.86)	1.48 (0.86)
	PA12GF		71 (0.77)	1.25 (0.72)
	PA66		154 (1.66)	1.14 (0.66)
32mm (1¼″)	POM	21	164 (1.76)	1.33 (0.77)
	PA12GF	_	149 (1.61)	1.20 (0.69)

*Average Density is calculated from the combination of the polymer and the glass filled yarn.

2.2.3] Standard Buckle Dimensions

Cino	Maximum Height (A)	Maximum Length (B)	Maximum Width (C)
Size	mm (inch)	mm (inch)	mm (inch)
7mm (¼″)	19.2 (0.76)	76.0 (2.99)	15.1 (0.59)
10mm (%″)	21.5 (0.85)	77.2 (3.04)	22.9 (0.90)
	~		



Size -	Maximum Height (A)	Maximum Length (B)	Maximum Width (C)
5126	mm (inch)	mm (inch)	mm (inch)
19mm (¾″)	28.3 (1.11)	63.8 (2.51)	30.2 (1.19)

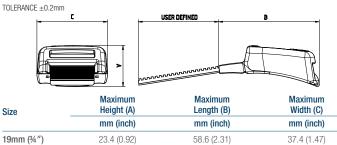
2.2.4] Standard Buckle Weight and Density Table

Cine	Motorial	Weight	Density	
Size	Material	g (oz)	g/cm ³ (oz/inch ³)	
7mm (¼″)		7 (0.24)	1.14 (0.66)	
10mm (%″)	PA66	12 (0.41)	1.14 (0.66)	
19mm (¾″)		24 (0.86)	1.14 (0.66)	
7mm (¼″)		6.4 (0.23)	1.04 (0.60)	
10mm (%")	PA12	10.9 (0.38)	1.04 (0.60)	
19mm (¾″)		21.9 (0.77)	1.04 (0.60)	

2.2.5] Hybrid Buckle Dimensions

Size	Maximum Height (A)	Radius (B)	Maximum Length (C)	Maximum Width (D)
	mm (inch)	mm (inch)	mm (inch)	mm (inch)
19mm (¾″)	12.8 (0.50)	200 (7.87)	99.0 (3.90)	53.0 (2.09)
32mm (1¼″)	16.8 (0.66)	300 (11.81)	135.5 (5.33)	76.8 (3.02)

2.2.6] Hybrid Buckle Weight and Density Table


0:	Material	Weight	Average Density*
Size	Material	g (oz)	g/cm ³ (oz/inch ³)
	PA66	36 (1.27)	1.20 (0.70)
19mm (¾″)	POM	41 (1.45)	1.37 (0.79)
	PA12GF	39 (1.38)	1.30 (0.75)
	PA66GF	99 (3.49)	1.14 (0.66)
32mm (1¼″)	POM	101 (3.57)	1.36 (0.78)
_	PA12GF	95 (3.35)	1.28 (0.74)

*Average Density is calculated from the combination of the latch and the buckle.

2.3] Smart[®] Band Compact Dimensions and **Weights**

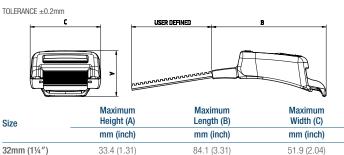
2.3.1] Smart[®] Band Compact Dimensions

Note. The Smart® Band Compact incorporates Smart® Band encapsulated within the buckle section. The length options of Smart® Band Compact are variable and can be cut to suit customer specific requirements

30.0 (1.18) 2.3.2] Smart[®] Band Compact Weight and Density Table

*Weight and Average Density of buckle includes the latch and the integral length of over-moulded band.

74.0 (2.91)


51.9 (2.04)

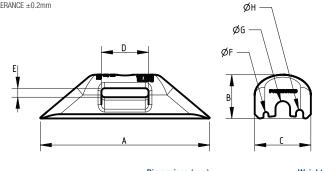
Size	Material	Weight Buckle Head* g (oz)	Weight of Band g (oz)	Average Density* g/cm ³ (oz/inch ³)
19mm (¾″)	PA12GF	23.3 (0.82)		1.25 (0.72)
20mm (11/ //)	PA12GF	55.1 (1.94)	Refer to section 2.2.1	1.29 (0.75)
32mm (1¼")	PPS	48.5 (1.71)	-	1.26 (0.73)

2.3.3] Smart® Band Compact High Load

32mm (11/4")

The Smart® Band Compact High Load is specifically designed to withstand high roller loads in Stinger applications. The rear tab provides support and reduces deformation of the strap as it enters the buckle.

2.3.4] Smart® Band Compact High Load Weight and Density Table


*Weight and Average Density of buckle includes the latch and the integral length of over-moulded band.

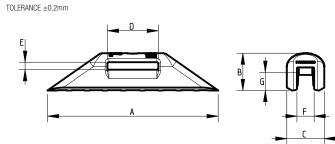
Size	Material	Weight Buckle Head*	Weight of Band	Average Density*
		g (oz)	g (oz)	g/cm ³ (oz/inch ³)
00mm (11/ //)	PA12GF	56.9 (2.01)	- Refer to section 2.2.1	1.29 (0.75)
32mm (1¼″)	PPS	51.4 (1.83)		1.26 (0.73)

2.4] Smart[®] Protector Dimensions and Weights


2.4.1] Smart® Protector SP-100: (Cable Suitability: 1 x 1/4" Control Line, 1 x 1/8" Control Line, 1 x 2mm Fibre Optic)

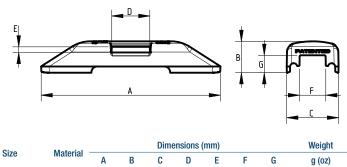
TOLERANCE ±0.2mm

Cine	Motorial			D	imensio	ons (mi	n)			Weight
Size	Material	Α	В	C	D	Е	F	G	Н	g (oz)
	PA66									14.1 (0.50)
	PA12									12.8 (0.45)
SP-100	PK	75.5	19.5	25.0	21.0	4.0	Ø2.2	Ø6.5	Ø3.2	15.5 (0.55)
	PPS									15.5 (0.55)
	PEEK									16.1 (0.57)

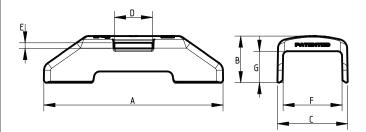

2.4.2] Smart® Protector SP-100-2: (Cable Suitability: 2 x 1/4" Control Lines)

Size		Dimensions (mm)							Weight
Size	Material	Α	В	С	D	Е	F	G	g (oz)
	PA66								22.3 (0.79)
	PA12								19.8 (0.70)
SP-100-2	PK	104.0	22.0	25.0	34.0	5.0	6.6	6.6	23.8 (0.84)
	PPS								24.5 (0.86)
	PEEK	-							25.4 (0.90)

2.4.3] Smart® Protector SP-200: (Cable Suitability: 1 x 11mm Square Encapsulated Line or 1 x 11mm Dia Round Encapsulated Line)


Smart® Protector SP-200-3/8: The Smart® Protector includes a rubber insert strip to accommodate $\frac{3}{8}$ square or round encapsulated line.

0:	Material			Dime	ensions (mm)			Weight
Size	Material	Α	В	С	D	Е	F	G	g (oz)
	PA66				21.5 (0.76)				
CD 000	PA12								19.2 (0.68)
SP-200 SP-200-3/8	PK	114.0	24.9	25.0	34.0	5.0	11.5	12.2	23.6 (0.83)
35-200-3/0	PPS	-							24.0 (0.85)
	PFFK	-							24.5 (0.86)


2.4.4] Smart® Protector SP-300: (Cable Suitability: 1 or 2 x 11mm Square or Round Encapsulated Line and/or 1 or 2 x 1/4" Control Lines)

TOLERANCE ±0.2mm

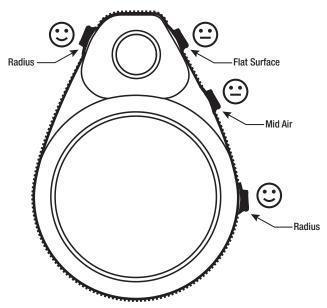
		~	D	U	D	- -		u	g (02)
	PA66								43.0 (1.52)
	PA12								38.8 (1.37)
SP-300	PK	159.6	27.9	46.2	33.9	5.0	23.4	15.6	47.2 (1.67)
	PPS	_							47.1 (1.66)
	PEEK	_							49.0 (1.73)


2.4.5] Smart® Protector SP-400: (Cable Suitability: Flat ESP Cables) TOLERANCE ±0.2mm

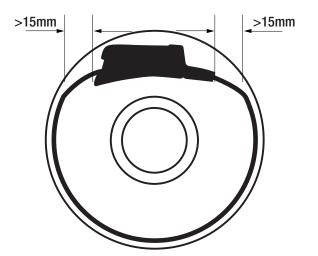
0:	Material	Dimensions (mm)							Weight
Size	Material	Α	В	C	D	E	F	G	g (oz)
	PA66								44.0 (1.55)
CD 400	PA12								39.7 (1.40)
SP-400- 3820	PK	160.0	32.5	46.2	34.2	5.0	38.1	20.1	48.3 (1.70)
3020	PPS								48.2 (1.70)
	PEEK	-							50.2 (1.77)
	PA66								63.0 (2.22)
CD 400	PA12	-							56.9 (2.01)
SP-400- 5228	PK	159.6	41.5	62.6	33.8	5.0	52.5	28.0	79.2 (2.44)
JZZO	PPS								69.1 (2.44)
	PEEK	_							71.8 (2.53)

2.4.6] Smart® Protector SP-500: (Cable Suitability: Round Cables)

TOLERANCE ±0.2mm

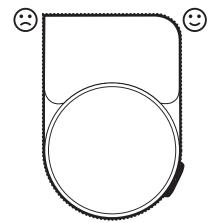

0			Dimensions (mm)						Weight
Size	Material	Α	В	С	D	Е	F	G	g (oz)
	PA66								29.5 (1.04)
00 500	PA12	-							26.7 (0.94)
SP-500- 1721	PK	122.9	34.9	33.8	32.2	6.6	Ø17.0	Ø20.0	32.4 (1.14)
1721	PPS	_							32.3 (1.14)
	PEEK	-							33.6 (1.19)
	PA66								80.4 (2.84)
DD 500	PA12	-							72.1 (2.54)
SP-500- 3338	PK	181.0	56.2	55.7	33.5	8.5	Ø33.0	Ø38.0	88.3 (3.11)
0000	PPS								88.7 (3.13)
	PEEK	-							92.4 (3.26)

3.1] Buckle Location

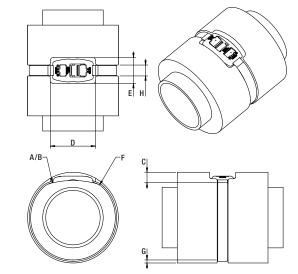

Piggyback Buckle Positions

- Ideally, the Smart[®] Band Hybrid, Compact or Smart[®] Tie buckle should be positioned on a radius; please see 3.2.1 for recommendations. If the buckle must be positioned on a diameter smaller than is recommended, then the banding product may require installation at a reduced tension and the system strength should be expected to be lower than the published values.
- 2. If it is not possible for the buckle to be positioned on a suitable radius, then the buckle should be positioned on a flat surface. If positioning the buckle on a flat surface, avoid sharp corners near to the buckle (see below); it may also be necessary to reduce the installation tension, and the system strength should be expected to be lower than the published values.
- 3. Where possible, avoid suspending the buckle in mid-air. If this is unavoidable, then the banding product may require installation at a reduced tension and the system strength should be expected to be lower than the published values.

Cable Protection Buckle Position


Where possible, avoid having a sharp band radius near to the end of the buckle. If this is necessary, e.g. on a smaller diameter application, then the recess length for the buckle (dimension 'D' on the opposite page) should be increased in order to move the sharp band radius away from the buckle. If this is unavoidable, then the banding product may require installation at a reduced tension and the system strength should be expected to be lower than the published values.

Recommended Minimum Fitting Diameter For recommended fitting diameter refer to sections 3.2.1 and 3.2.2


3.1.1] Band Profile

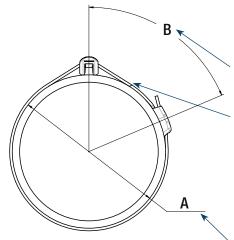
DO NOT ALLOW BAND TO PASS OVER 90 DEGREE CORNERS

3.2] Recess Dimensions

The following design guidelines for applications utilising Smart[®] Tie or Smart[®] Band will ensure maximum performance of the banding product. The underside of the buckles are curved, so it is recommended that the radius on the application is designed to match the radius on the buckle whenever possible. For environments prone to abrasion or impact, it is recommended that the Smart[®] Band is recessed into the application, in order to give the product greater protection. Certain applications, particularly smaller diameters, may require a special area to be created for the buckle, as shown below to correctly match the underside radius.

3.2.1] Buckle Recess Dimensions

Product	Size	Recommended Buckle Radius (A) mm (inch)	Minimum Buckle Radius (B) mm (inch)	Minimum Recess Depth (C) mm (inch)	Minimum Recess Length (D) mm (inch)	Minimum Recess Width (E) mm (inch)
Cmorte Tio	20mm (¾")	100 (3.94)	30 (1.18)	13 (0.51)	80 (3.15)	39 (1.54)
Smart® Tie	32mm (11⁄4″)	100 (3.94)	30 (1.18)	20 (0.78)	100 (3.94)	55 (2.17)
	7mm (¼″)	300 (11.81)	50 (1.97)	21 (0.83)	86 (3.39)	19 (0.75)
Smart [®] Band Standard	10mm (¾")	300 (11.81)	38 (1.48)	23 (0.91)	88 (3.46)	27 (1.06)
Stanuaru	19mm (¾")	100 (3.94)	38 (1.48)	30 (1.18)	75 (2.95)	34 (1.34)
Smart [®] Band	19mm (¾")	200 (7.87)	100 (3.94)	14 (0.55)	110 (4.33)	57 (2.24)
Hybrid	32mm (11⁄4")	300 (11.81)	200 (7.87)	18 (0.71)	145 (5.71)	81 (3.19)
Smart [®] Band	19mm (¾")	100 (3.94)	50 (1.97)	18 (0.71)	60 (2.36)	40 (0.157)
Compact	32mm (1¼")	300 (11.81)	100 (3.94)	24 (0.94)	80 (3.15)	55 (2.16)


3.2.2] Band Recess Dimensions

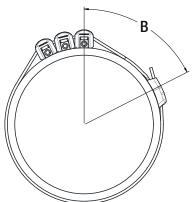
Product	Size	Minimum Band Radius (F)	Minimum Recess Depth (G)	Minimum Recess Width (H)	
		mm (inch)	mm (inch)	mm (inch)	
Smart® Tie	20mm (¾")		5 (0.20)	22 (0.87)	
Smarte ne	32mm (11⁄4″)		6 (0.24)	36 (1.42)	
	7mm (¼″)	10 (0.20)	4 (0.16)	9 (0.35)	
Cmort® Dond	10mm (¾″)	10 (0.39)	5 (0.20)	12 (0.47)	
Siliant [®] Band	nart® Band 19mm (¾″)		5 (0.20)	22 (0.87)	
	32mm (1¼″)		6 (0.24)	36 (1.42)	

3.3] Smart[®] Protector Location

3.3.1] Smart[®] Protector Positioning

When specifying Smart[®] Protector in conjunction with Smart[®] Band or Smart[®] Tie, consideration must be given to the position of the buckle in relation to the Smart[®] Protector. Refer to the illustrations below and Section 3.3.3 Maximum Diameter and Minimum Angle to ensure correct positioning. This will enable the optimum system performance to be achieved.

Minimum position of buckle from Smart[®] Protector. See Section 3.3.3 Maximum Diameter & Minimum Angle. Dimension B is suggested to ensure that the buckle and a sufficient quantity of strap is in contact with the pipe before the strap rises away tangentially to the Smart[®] Protector.


Note: As the pipe diameter reduces, dimension B will increase to maintain a sufficient contact condition.

Maximum pipe diameter. See Section 3.3.3 Maximum Diameter & Minimum Angle.

3.3.2] Using Multiple Smart® Protectors

Multiple Smart[®] Protectors can be used on an application. If utilizing the same style of protector, it is advisable to butt the protectors together to prevent movement in application. If using dissimilar protectors, positioning should ensure that the protectors and the protected cables are adequately secured.

Position additional protectors anti-clockwise from the first unit to ensure sufficient quantity of strap is in contact with the pipe before the strap rises away tangentially to the Smart[®] Protector.

3.3.3] Maximum Diameter and Optimum Angle

When specifying Smart[®] Protector in conjunction with Smart[®] Tie, consideration must be given to the following:

1. The pipe diameter onto which the Smart® Protector will be positioned.

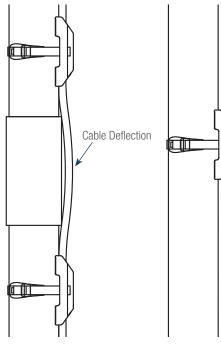
2. The type of fitting tool that will be utilized.

Note. The SM-FT-1000 Tool will require a greater tail length of strap through the assembled Smart® Tie to operate compared to the SM-FT-2000 & SM-FT-3000 Tools. See Table.

3.3.3.1] SM-FT-1000

	Smart	® Tie	Maximum	Minimum
Smart® Protector	Cine	Length	Diameter (A)	Angle (B)
FIOLECIUI	Size —	mm	mm (inch)	Deg
		450	Ø66 (Ø2.60)	180°
SP-100	20mm (¾")	600	Ø102 (Ø4.02)	105°
	_	750	Ø183 (Ø7.20)	65°
		450	Ø66 (Ø2.60)	180°
	20mm (¾")	600	Ø102 (Ø4.02)	105°
SP-100-2	_	750	Ø183 (Ø7.20)	65°
	00 (11///)	550	Ø124 (Ø4.88)	145°
	32mm (1¼″) —	850	Ø220 (Ø8.66)	120°

Concerto	Smart	® Tie	Maximum	Minimum	
Smart® Protector	Size -	Length	Diameter (A)	Angle (B)	
TIOLECIOI	5126	mm	mm (inch)	Deg	
		450	Ø63 (Ø2.48)	180°	
000	20mm (¾")	600	Ø100 (Ø3.94)	115°	
SP-200 SP-200-3/8		750	Ø181 (Ø7.13)	75°	
3F-200-3/0	00mm (11///)	550	Ø97 (Ø3.82)	145°	
	32mm (1¼″) —	850	Ø194 (Ø7.64)	105°	
		450	Ø61 (Ø2.40)	180°	
	20mm (¾")	600	Ø98 (Ø3.86)	120°	
SP-300	_	750	Ø179 (Ø7.05)	85°	
	00mm (11///\	550	Ø94 (Ø3.7)	150°	
	32mm (1¼″) —	850	Ø195 (Ø7.68)	115°	
		450	N/A (N/A)	N/A	
	20mm (¾")	600	Ø96 (Ø3.78)	125°	
SP-400-3820		750	Ø177 (Ø6.97)	90°	
	00 (11///)	550	Ø91 (Ø3.58)	155°	
	32mm (1¼″) —	850	Ø190 (Ø7.48)	120°	
		450	N/A (N/A)	N/A	
	20mm (¾")	600	Ø92 (Ø3.62)	145°	
SP-400-5228		750	Ø172 (Ø6.77)	95°	
	00	550	Ø87 (Ø3.43)	175°	
	32mm (1¼″) —	850	Ø185 (Ø7.28)	125°	
		450	N/A (N/A)	N/A	
	20mm (¾″)	600	Ø97 (Ø3.82)	115°	
SP-500-1721	_	750	Ø177 (Ø6.97)	80°	
	00mm (11///\	550	Ø93 (Ø3.66)	145°	
	32mm (1¼″) —	850	Ø191 (Ø7.52)	110°	
		450	N/A (N/A)	N/A	
	20mm (¾")	600	Ø137 (Ø5.39)	120°	
SP-500-3338		750	Ø153 (Ø6.02)	100°	
	32mm (1¼″) —	550	Ø84 (Ø3.31)	150°	


3.3.3.2] SM-FT-2000 and SM-FT-3000

	Smart	® Tie	Maximum	Minimum Angle (B)
Smart® Protector	0.	Length	Diameter (A)	
TOLECION	Size —	mm	mm (inch)	Deg
		450	Ø86 (Ø3.39)	130°
SP-100	20mm (¾″)	600	Ø123 (Ø4.84)	95°
		750	Ø209 (Ø8.23)	60°
		450	Ø86 (Ø3.39)	130°
	20mm (¾″)	600	Ø123 (Ø4.84)	95°
SP-100-2	_	750	Ø209 (Ø8.23)	60°
	20mm (11/.//)	550	Ø147 (Ø5.79)	135°
	32mm (1¼″) —	850	Ø243 (Ø9.57)	110°
		450	Ø84 (Ø3.31)	140°
	20mm (¾")	600	Ø111 (Ø4.37)	105°
SP-200		750	Ø208 (Ø8.19)	65°
	00mm /11/ //	550	Ø120 (Ø4.72)	135°
	32mm (1¼") —	850	Ø217 (Ø8.54)	95°
		450	Ø82 (Ø3.23)	155°
		600	Ø119 (Ø4.69)	110°
SP-300		750	Ø206 (Ø8.11)	75°
	32mm (11⁄4″) –	550	Ø117 (Ø4.61)	140°
		850	Ø214 (Ø8.43)	105°
		450	Ø80 (Ø3.15)	160°
	20mm (¾")	600	Ø117 (Ø4.61)	115°
SP-400-3820		750	Ø204 (Ø8.03)	80°
	00mm (11///\	550	Ø115 (Ø4.53)	145°
	32mm (1¼″) —	850	Ø212 (Ø8.35)	110°
		450	Ø76 (Ø2.99)	180°
	20mm (¾")	600	Ø113 (Ø4.45)	135°
SP-400-5228		750	Ø199 (Ø7.83)	90°
	20mm (11/.//)	550	Ø110, (Ø4.33)	165°
	32mm (1¼″) —	850	Ø208, (Ø8.19)	105°
	_	450	Ø81 (Ø3.19)	155°
	20mm (¾")	600	Ø118 (Ø4.65)	105°
SP-500-1721		750	Ø205 (Ø8.07)	75°
	32mm (1¼") —	550	Ø116 (Ø4.57)	135°
	JZIIIII (174)	850	Ø214 (Ø8.43)	105°
	_	450	Ø79 (Ø3.11)	180°
	20mm (¾")	600	Ø165 (Ø6.50)	120°
SP-500-3338		750	Ø182 (Ø7.16)	110°
	32mm (1¼″) —	550	Ø105 (Ø4.13)	100°
	JZIIIII (174)	850	Ø206 (Ø8.11)	75°

3.4] Downhole Snagging Prevention

The base engineering polymers used to create Smart^ $\!\!\!^{\textcircled{B}}$ products have low friction and good abrasion resistant properties.

'Cross Coupling' Cable Protection	'Between Joint' Cable Protection
-----------------------------------	----------------------------------

'Cross Coupling' Cable Protection

When utilizing the Smart[®] Protector and Smart[®] Tie system to secure cable in a cross coupling arrangement, position of the Smart[®] Protector should be based on the following consideration:

1. The Smart[®] Protector should be positioned as close to the coupling as possible without causing excessive deflection of the cable over the coupling edge.

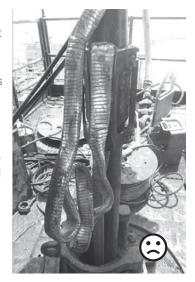
2. If the cable is stiff and less flexible the Smart[®] Protector will need to be

positioned further away from the coupling to avoid excessive deflection.

'Between Joint' Cable Protection

The number of Smart® Protector and Smart® Tie systems used to secure cable between joints should be based on the size and weight of the cable. The heavier the cable, the greater number of Smart® Protector and Smart® Tie systems will be required.

Over a 10m joint length based on a light fibre optic cable being secured, a minimum of 3 x Smart[®] Protector and Smart[®] Tie systems are advised for cable retention.

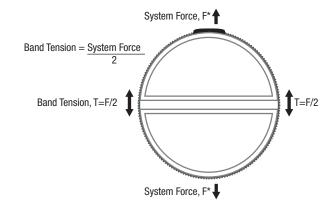


The image on the right shows the effect of a snagged ESP cable.

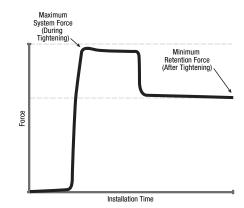
The use of the Smart[®] Protector and Smart[®] Tie system reduces the chances of snagging in downhole situations.

The shape of the protector assists in riding over any minor obstructions and the flexibility afforded to the positioning of the systems allow the strapped cable to be protected across the coupling and between the joints.

In the unlikely event of a serious collision or failure causing damage or breakage of the system, the polymer construction of the Smart[®] Protector and Smart[®] Tie has major advantages over metal strapping when trying to



clear accident debris from the downhole environment

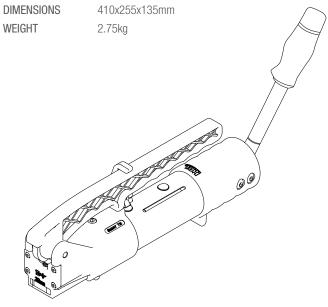

Refer to Section 20, Well Flushing.

The images below indicate how system force or global strap tension is derived along with a graphical representation of the general force profile during tool tightening, tool release and final retention.

*F= System Force or Global Strap Tension

Test Diameters

- 1. Smart® Tie 19mm tests conducted on 200mm diameter half-shells
- 2. Smart® Tie 32mm tests conducted on 200mm diameter half-shells
- 3. Smart® Band 19mm (¾") tests conducted on 600mm diameter half-shells
- 4. Smart® Band 32mm (11/4") tests conducted on 600mm diameter half-shells



F-2000	
and or 20mm Smart® Tie	
370x285x55mm	
0.75kg	
and or 32mm Smart® Tie	
460x377x70mm	
1.33kg	2
3	Band or 20mm Smart® Tie 370x285x55mm 0.75kg Band or 32mm Smart® Tie 460x377x70mm 1.33kg

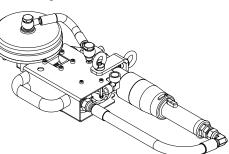
Product	Size	Material	Maximum System Force (During Tightening)	Minimum Retention Force (After Tightening)
			N (kgf) [lbf]	N (kgf) [lbf]
	_	PA66	3600 (367) [809]	1500 (153) [337]
	00mm (3///)	PA12	3000 (306) [674]	1100 (112) [247]
	20mm (¾") -	PK	3600 (367) [809]	1500 (153) [337]
Smart® Tie		PPS	2800 (286) [629]	1000 (102) [225]
		PA12	6500 (663) [1461]	3500 (357) [787]
	32mm (11⁄4")	PK	6500 (663) [1461]	3500 (357) [787]
		PPS	6800 (693) [1529]	3700 (377) [832]
		PA66	3500 (357) [787]	2000 (204) [450]
	19mm (¾")	POM	3500 (357) [787]	2000 (204) [450]
Smart [®] Band		PA12GF	4500 (459) [1012]	3000 (306) [674]
Hybrid and Compact		PA66GF	7000 (714) [1574]	3500 (357) [787]
	20mm (11/ //)	POM	7000 (714) [1574]	3500 (357) [787]
	32mm (11/4") -	PA12GF	7000 (714) [1574]	3500 (357) [787]
		PPS	7500 (765) [1686]	3500 (357) [787]

IMPORTANT: Figures stated are for tightening using reasonable effort. This will vary from operator to operator.

4.2] SM-FT-1000 Supplied with torque wrench

Product	Size	Material	Max Input Torque Nm	Maximum System Force (During Tightening) N (kgf) [lbf]	Minimum Retention Force (After Tightening) N (kgf) [lbf]
		PA66	7	3600 (367) [809]	1500 (153) [337]
	- 20mm	PA12	6	3000 (306) [674]	1100 (112) [247]
	(3/4″)	PK	7	3600 (367) [809]	1500 (153) [337]
Smart® Tie	-	PPS	5	2800 (286) [629]	1000 (102) [225]
		PA12	10	6000 (612) [1349]	2500 (255) [562]
	32mm - (1¼″) -	PK	13	7000 (714) [1574]	4000 (408) [899]
	(174) -	PPS	10	5500 (561) [1236]	2000 (204) [450]
	10	PA66	9	6000 (612) [1349]	2500 (255) [562]
	19mm - (¾″) -	POM	8	6000 (612) [1349]	2500 (255) [562]
Smart® Band . Hybrid and Compact	(/4)	PA12GF	10	7000 (714) [1574]	3500 (357) [787]
		PA66	17	14000 (1428) [3147]	7000 (714) [1574]
	32mm	POM	13	10000 (1020) [2248]	5000 (510) [1124]
	(1¼″)	PA12GF	17	14000 (1428) [3147]	7000 (714) [1574]
		PPS	17	12000 (1223) [2697]	7000 (713) [1573]

The torque wrench should be operated by employing a ratcheting technique. If the tool is to be used above 40°C, reduce the specified torque by 10%. It is not advisable to use the tool above 60°C.


4.3] SM-FT-3000 Pneumatic

19mm Smart® Band	d or 20mm Smart® Tie
DIMENSIONS	530x240x130mm
WEIGHT	6.40kg

32mm Smart® Band or 32mm Smart® Tie

DIMENSIONS	
WEIGHT	

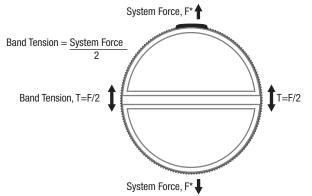
600x255x130mm 7.50kg

Product	Size	Material	Dynamic Pressure	*Maximum System Force (During Tightening)	*Minimum Retention Force (After Tightening)
			Мра	N (kgf) [lbf]	N (kgf) [lbf]
		PA66	0.60	3600 (367) [809]	1800 (184) [405]
	20mm	PA12	0.50	3000 (306) [674]	1400 (143) [315]
	(3/4″)	PK	0.65	6000 (612) [1349]	2500 (255) [562]
Smart® Tie		PPS	0.60	3000 (306) [674]	1400 (143) [315]
	32mm (11⁄4″)	PA12	0.45	6000 (612) [1349]	2500 (255) [562]
		PK	0.50	7000 (714) [1574]	4000 (408) [899]
	(174)	PPS	0.40	6000 (612) [1349]	2500 (255) [562]
	10mm	PA66	0.45	6500 (663) [1461]	3500 (357) [787]
	19mm · (¾″) ·	POM	0.45	6500 (663) [1461]	3500 (357) [787]
Smart® Band	(74)	PA12GF	0.50	7500 (765) [1686]	4000 (408) [899]
Hybrid and Compact		PA66GF	0.55	16500 (1683) [3709]	9000 (918) [2023]
	32mm	POM	0.45	12500 (1275) [2810]	7500 (765) [1686]
	(1¼″)	PA12GF	0.55	16500 (1683) [3709]	9000 (918) [2023]
		PPS	0.55	16500 (1683) [3709]	9000 (917) [2023]

Final Retention Force may be slightly lower on very small diameters. Final Retention Force will be significantly higher on very large diameters.

*These figures are dependant on the tool being set up in line with the instruction manual recommendations.

5.1] System Tensile Tests – Introduction


System tensile testing of Smart[®] Tie and Smart[®] Band is carried out in controlled conditions. A bespoke fixture comprising of two half shells is mounted onto a tensile test machine. The Smart[®] Tie and Smart[®] Band Products are fitted to the fixture and are tested and monitored to ascertain the tensile strength of the system. Stress/strain graphs are plotted.

Test Fixture: 2x Steel half-shells

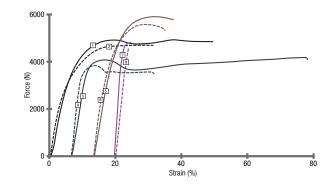
200N

Test pre-load:

Test Speed: 5mm/min (10mm/min Effective circumferential speed) Specimen Length: As per 'System Test Diameter and Circumference Table' below The published data in this section are for specimens tested when new and "dry as moulded". As the polymers condition, these figures may vary.

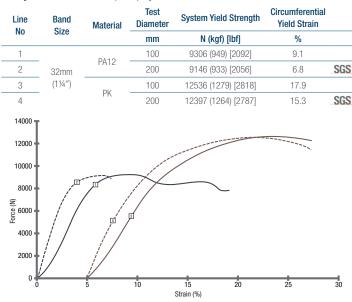
*F= System Force or Global Strap Tension

Note. The increased strain on the smaller diameters such as 200mm and 400mm is due to the flexing of the buckle as it bends around the profile.


5.1.1] System Test Diameter and Circumference Table

Test Diameter	Test Circumference		
mm (inch)	mm (inch)		
100 (3.9)	330 (13.0)		
200 (7.9)	650 (25.6)		
280 (11.0)	910 (35.8)		
400 (15.7)	1300 (51.2)		
600 (23.6)	1950 (76.8)		
800 (31.5)	2600 (102.4)		

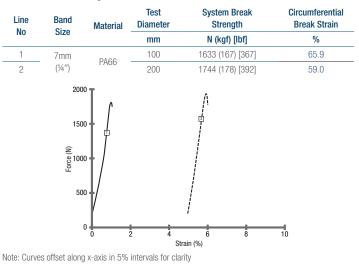
5.2] Smart[®] Tie System Tensile Tests


5.2.1] Smart® Tie 20mm (¾") System Tensile Tests

Line No	Band Size	Material	Test Diameter	System Yield Strength	Circumferential Yield Strain
NU	5126		mm	N (kgf) [lbf]	%
1	_	PA66	100	4976 (508) [1119]	18.0
2	_	PAOO	200	4763 (486) [1071]	18.7
3		PA12	100	4048 (413) [910]	9.7
4	20mm		200	3848 (392) [865]	7.8
5	(3/4″′)		100	5913 (603) [1329]	17.9
6	-	PK	200	5594 (571) [1258]	15.1
7		PPS	100	5023 (512) [1129]	8.3
8		rf9	200	4774 (487) [1073]	10.2

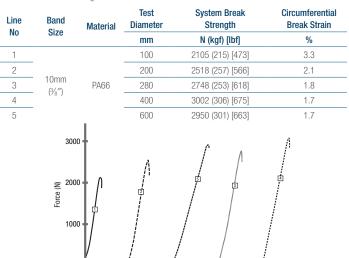
Note: Curves offset along x-axis in 5% intervals for clarity

5.2.2] Smart® Tie 32mm (11/4") System Tensile Tests



Note: Curves offset along x-axis in 2.5% intervals for clarity

5.3] Smart[®] Band System Tensile Tests – Standard Buckle

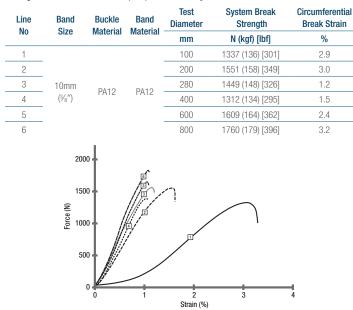

5.3.1] Smart[®] Band 7mm (¼") Standard – PA66

Note. The figures quoted are for PA66 in the 'dry as moulded' condition. These figures will vary dependant on environmental conditioning.

5.3.2] Smart[®] Band 10mm (¾") Standard System Test – PA66

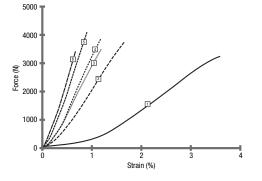
Note.The figures quoted are for PA66 in the 'dry as moulded' condition.These figures will vary dependant on environmental conditioning.

10

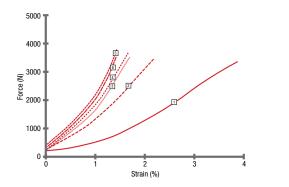

Strain (%)

15

20


5.3.3] Smart® Band 10mm (%") Standard System Test – PA12

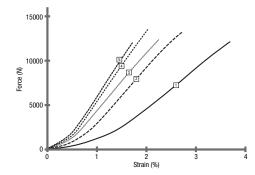
5.3.4] Smart® Band 19mm (¾") Standard System Test – PA66


Note. The figures quoted are for PA66 in the 'dry as moulded' condition. These figures will vary dependant on environmental conditioning.

Line No	Band Size	Buckle Material	Band Material	Test Diameter	System Break Strength	Circumferential Break Strain
NU	5126	Material	Wateria	mm	N (kgf) [lbf]	%
1				100	3219 (328) [724]	3.6
2		9mm (¾″) PA66	PA66	200	3627 (370) [815]	1.7
3	19mm			280	3396 (346) [763]	1.2
4	(3/4″)			400 3948 (403) [888]	3948 (403) [888]	1.2
5				600	4086 (417) [919]	0.9
6				800	3396 (346) [763]	0.8
-						

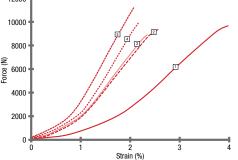
5.3.5] Smart® Band 19mm (¾") Standard System Test – POM/PA66

Line	Line Band Buckle No Size Material		Test Diameter	System Break Strength	Circumferential Break Strain		
NO		Material	waterial	mm	N (kgf) [lbf]	%	
1		19mm PA66 (¾″)	POM	100	3201 (327) [720]	4.0	
2				200	3161 (322) [711]	2.2	
3	19mm			280	3557 (363) [800]	1.7	
4	(3⁄4″)			FUIVI	400	3613 (369) [812]	1.7
5				600	3883 (396) [873]	1.5	
6				800	3555 (363) [799]	1.5	

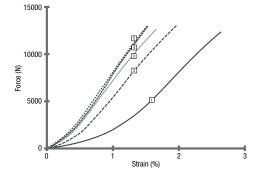


5.4] Smart[®] Band System Tensile Tests – Hybrid Buckle

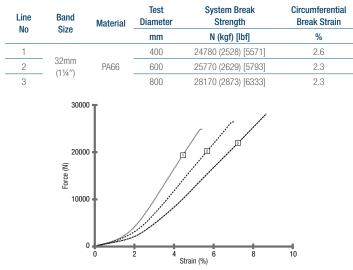
5.4.1] Smart® Band 19mm (¾") Hybrid System Test – PA66


Note. The figures quoted are for PA66 in the 'dry as moulded' condition. These figures will vary dependant on environmental conditioning.

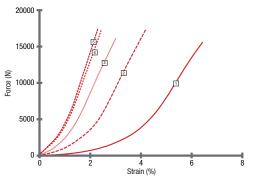
Band	Material	Test System Break Diameter Strength		Circumferential Break Strain	
3126		mm	N (kgf) [lbf]	%	
		200	11910 (1215) [2677]	3.7	
10		280	13190 (1345) [2965]	2.7	
	PA66	400	11600 (1183) [2608]	2.2	
- (%)		600	12720 (1297) [2859]	2.0	
		800	11460 (1169) [2576]	1.7	
	Band Size 19mm (¾″)	19mm PA66	Band Size Material Diameter 19mm 200 280 19mm 400 600	Band Size Material Diameter Strength 19mm (¾") PA66 200 11910 (1215) [2677] 280 13190 (1345) [2965] 400 11600 (1183) [2608] 600 12720 (1297) [2859]	


5.4.2] Smart® Band 19mm (¾") Hybrid System Test – POM

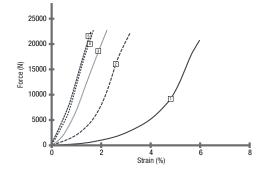
Line No	Band Size	Material	Test Diameter	System Break Strength	Circumferential Break Strain	
NU	5126		mm	N (kgf) [lbf]	%	
1			200	9490 (968) [2133]	4.0	
2			280	9110 (929) [2048]	2.6	
3	19mm - (¾″)	POM	400	9030 (921) [2030]	2.4	
4	(74)		600	9980 (1018) [2244]	2.3	
5			800	11010 (1123) [2475]	2.1	
	1200	0 -				


5.4.3] Smart® Band 19mm (¾") Hybrid System Test – PA12GF

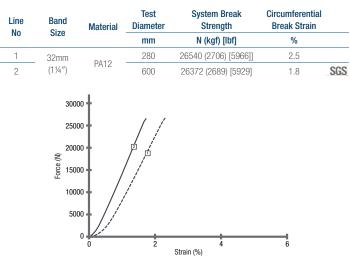
Line No	Band Size	Material	Test Diameter	System Break Strength	Circumferential Break Strain
NU	5120		mm	N (kgf) [lbf]	%
1			200	12530 (1278) [2817]	2.8
2			280	12990 (1325) [2920]	2.0
3	19mm (¾″)	PA12GF	400	12470 (1272) [2803]	1.7
4	(74)		600	12950 (1321) [2911]	1.5
5			800	12760 (1302) [2868]	1.5


5.4.4] Smart® Band 32mm (11/4") Hybrid System Test – PA66GF

Note. The figures quoted are for PA66 in the 'dry as moulded' condition. These figures will vary dependant on environmental conditioning.


5.4.5] Smart® Band 32mm (11/4") Hybrid System Test - POM

Line Band No Size		Material	Test Diameter	System Break Strength	Circumferential Break Strain	
NU	3126		mm	N (kgf) [lbf]	%	
1			200	15180 (1548) [3412]	6.5	
2			280	16500 (1683) [3709]	4.2	
3	32mm (1¼″)	POM	400	16090 (1641) [3617]	3.1	
4	(1/4)		600	17200 (1754) [3867]	2.5	
5			800	17380 (1773) [3907]	2.4	

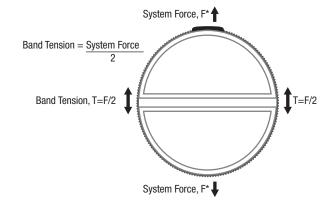

5.4.6] Smart® Band 32mm (11/4") Hybrid System Test - PA12GF

	Line	Mat		Test Diameter	System Break Strength	Circumferential Break Strain	
No	Size		mm	N (kgf) [lbf]	%		
	1			200	20860 (2128) [4689]	5.9	
	2			280	22580 (2303) [5076]	3.2	
	3	32mm (1¼″)	PA12GF	400	23000 (2346) [5170]	2.3	
	4	(174)	(174)	600	22980 (2344) [5166]	1.7	SGS
1	5	-		800	22650 (2310) [5092]	1.7	

5.5] Smart[®] Band Compact System Tensile Tests

6] Creep and Stress Relaxation

The phenomenon known as creep describes how materials strain (stretch/ compress) when subjected to a constant stress (tensile/compressive force). Stress Relaxation, which views the same phenomena from a different stand point, describes how materials relieve stress when subjected to a constant strain. In simple terms:

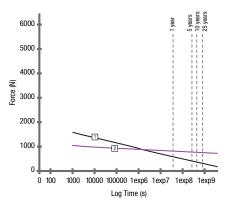

Creep: The test specimen is held at a constant force and the deformation (increase/decrease in length) is measured over time.

Stress Relaxation: The test specimen is held in a constant position and the change in force (increase/decrease) is measured over time.

Smart[®] Band is made from a combination of engineering polymers, which possess strong creep resistant characteristics, in combination with glass fibre yarn to reduce the effects of creep to a minimum.

6.1] Stress Relaxation

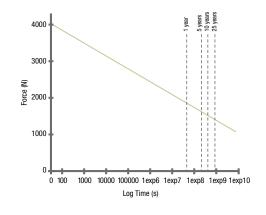
This section concentrates on Stress Relaxation, which is generally more relevant in strapping applications. All tests were carried out at $18-20^{\circ}$ C.



Note. All tests carried out using half shells mounted on a load cell

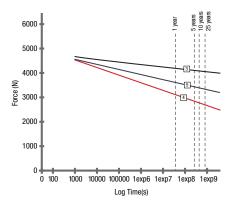
Line No	Product	Band Band & Buckle Size Material		Starting System Force	Tension after 1 Year Approx	Tension after 5 Years Approx	Tension after 25 Years Approx
				Ν	Ν	Ν	Ν
1	Smart®	20mm	PA66	2,000	700	600	450
2	Tie	(3/4″)	PPS	1,000	750	725	700
3	_	10	PA66	5,000	4000	3900	3800
4	0	19mm (¾″)	POM	5,000	3100	2800	2600
5	Smart® Band	(74)	PA12GF	5,000	3600	3400	3100
6		32mm	POM	10,000	6000	5500	4800
7		(11/4″)	PA12GF	10,000	7300	7100	6800

6.1.1] Smart® Tie 20mm (¾") System in Air

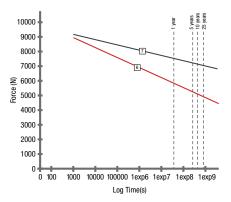

Note. The Smart® Tie 20mm is fitted and tightened to a 100mm diameter half shell which is mounted on a tensile test machine. The tightening tension is controlled by using the SM-FT-1000 tool at the specified torque setting. The tensile machine cross beam is held at a constant position for 10 days and the tension force is recorded over this time. The results are extrapolated onto a log graph to determine the stress relaxation over the lifetime of the product.

6.1.2] Smart® Tie 32mm (11/4") System in Air

Note. The Smart® Tie 32mm is fitted and tightened to a 200mm diameter half shell which is mounted on a tensile test machine. The tightening tension is controlled by using the SM-FT-1000 tool at the specified torque setting. The tensile machine cross beam is held at a constant position for 10 days and the tension force is recorded over this time. The results are extrapolated onto a log graph to determine the stress relaxation over the lifetime of the product.


6.1.3] Smart® Tie 32mm (11/4") Stress Relaxation in Air

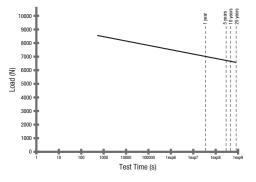
Product	Band Size	Band & Buckle Material	Starting System Force	Tension after 1 Year Approx	Tension after 5 Years Approx	Tension after 25 Years Approx
			Ν	Ν	Ν	Ν
Smart [®] Tie	32mm (11⁄4″)	PK	4,000	1900	1600	1400


6.1.4] Smart[®] Band 19mm (3/4") Hybrid System in Air

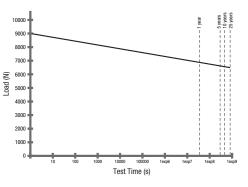
Note. The Smart® Band 19mm hybrid system is fitted and tightened to a 600mm diameter half shell which is mounted on a tensile test machine. The tightening tension is controlled by using the SM-FT-1000 tool at the specified torque setting. The tensile machine cross beam is held at a constant position for 10 days and the tension force is recorded over this time. The results are extrapolated onto a log graph to determine the stress relaxation over the lifetime of the product.

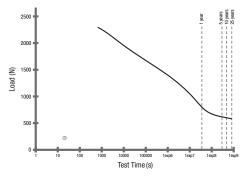
6.1.5] Smart[®] Band 32mm (1¹/₄") Hybrid System in Air

Note. The Smart® Band 32mm hybrid system is fitted and tightened to a 600mm diameter half shell which is mounted on a tensile test machine. The tightening tension is controlled by using the SM-FT-1000 tool at the specified torque setting. The tensile machine cross beam is held at a constant position for 10 days and the tension force is recorded over this time. The results are extrapolated onto a log graph to determine the stress relaxation over the lifetime of the product.

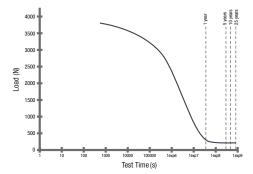


6.1.6] Smart® Band & Smart® Tie Systems in Water

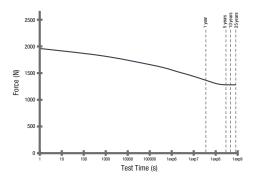

The Smart[®] Band products are set up on dia 400 half shells and the Smart[®] Tie product is set up on dia 200 half shells. The half shells are fitted with individual load cells which are subsequently linked to data loggers for continuous recording. The half shells are submersed within a tank of deionized water which is maintained at a constant temperature of 20°C (68°F).



6.1.6.1] 32mm Smart® Band Hybrid PA12GF – Graph – Log Time



6.1.6.2] 32mm Smart® Band Compact PA12GF – Graph – Log Time



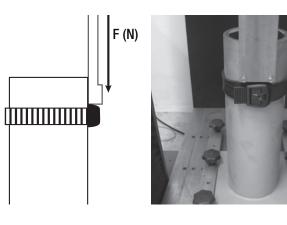
6.1.6.4] 32mm Smart® Tie PK – Graph – Log Time

6.1.6.5] 32mm Smart® Tie PPS – Graph – Log Time

It should be noted that moisture uptake in the PA12 material accelerates the rate of stress relaxation during the first 6 months (during this period saturation is reached).

🕞 7] Axial Retention

Axial retention is an important consideration when clamping cables to downhole pipes. The clamping retention of the cable must be large enough to cope with two aspects of the installation:

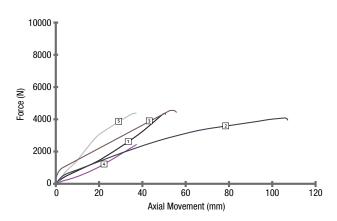

- 1. The weight of the cable
- 2. The expected resistance when snags and joints etc. are encountered.

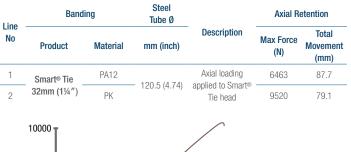
Open well situations need very careful consideration as the forces encountered from snags may be much higher than a cased well installation.

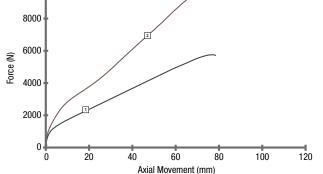
7.1] Banding Axial Retention

The following jig setup on a Tensile Testing machine was used to measure the axial retention for Smart[®] Tie and Smart[®] Band products. The tests include a comparison with steel strap.

Test pre-load: 20N Test Speed: 10mm/min Steel Tube Surface Finish: Sand-blasted finish. Grit size FEPA F46 (370µm mean diameter)

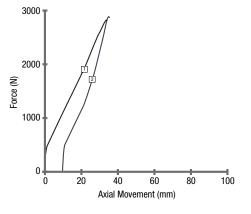



7.1.1] Smart® Tie 20mm (¾") Axial Retention

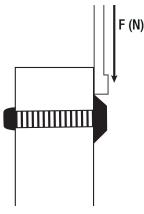

Line No	Banding		Steel Tube Ø			Axial Retention		
	Product	Material	mm (inch)	Description	Max Force (N)	Total Movement (mm)		
1		PA66			3957	50.1		
2	Smart® Tie	PA12		Axial loading applied to Smart® Tie head	3734	106.3		
3	20mm (¾")	PK	120.5 (4.74)		4300	61.3		
4		PPS	120.0 (4.74)		2241	37.1		
5	Metal Banding 19mm (¾″)	Stainless Steel		Axial loading applied to Stainless Steel Buckle	3975	36.6		

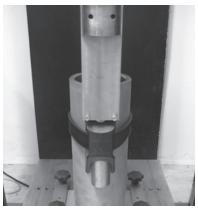
NB. Axial Retention varies with the band tension and surface finish of the application.

7.1.2] Smart® Tie 32mm (11/4") Axial Retention



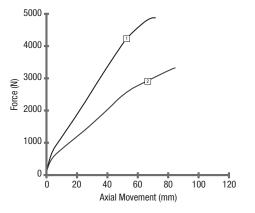
7.1.3] Smart® Band 19mm (¾") Axial Retention


Lino	Banc	Banding			Axial Retention		
	Line No	Product	Material	mm (inch)	Description	Max Force (N)	Total Movement (mm)
	1	Smart® Band	PA66	000 (7.07)	Axial loading applied to Smart® Band head	2684	34.0
	2 19 r	19mm (¾″)	PA12GF	200 (7.87)		2756	24.5


NB. Axial Retention varies with the band tension and surface finish of the application.

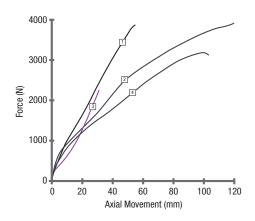
Note: Curves offset along x-axis in 10mm intervals for clarity.

7.2] Banding and Smart[®] Protector Assembly Axial Retention



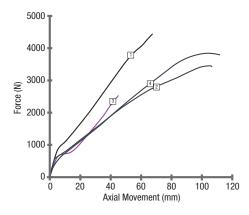
7.2.1] SP-100 with Smart® Tie 20mm (3/4")

Line	Duradurat	Metavial	Steel Tube Ø	Axial Retention		
No	Product	Material	mm (inch)	Max Force (N)	Total Movement (mm)	
1	Smart® Tie	PA66	100 E (4 74)	4901	71.0	
2	20mm (¾")	PA12	- 120.5 (4.74) -	3310	84.2	


Note. Axial Retention varies with the band tension and surface finish of the application.

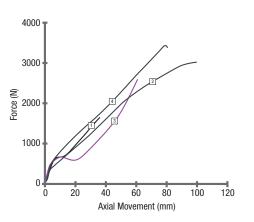
7.2.2] SP-200 with Smart® Tie 20mm (3/4) and Smart® Tie 32mm (11/4) and Smart® Tie 32mm (11/4) $\,$

	Line	Smart® Tie	Ste		Axial Retention		
	No	Size	Material	mm (inch)	Max Force (N)	Total Movement (mm)	
	1	00	PA66		3882	54.6	
	2	20mm — - (¾") —	PA12		3932	119.6	
	3	(/4)	PPS	120.5 (4.74)	2274	31.5	
-	4 32mm (1¼")		PA12		6320	100	


Note. Axial Retention varies with the band tension and surface finish of the application.

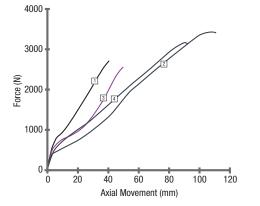
7.2.3] SP-300 with Smart® Tie 20mm (¾") and Smart® Tie 32mm (1¼")

Line	Smart® Tie	Matazial	Steel Tube Ø	Axial Retention		
No	Size	Material	mm (inch)	Max Force (N)	Total Movement (mm)	
1	00	PA66		4472	67.6	
2	20mm — . (¾") —	PA12		3469	106	
3	(/4)	PPS	120.5 (4.74)	2538	4.3	
4	32mm (1¼")	PA12		6120	104	


Note. Axial Retention varies with the band tension and surface finish of the application.

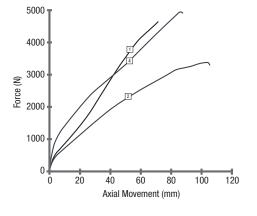
7.2.4] SP-400-3820 with Smart® Tie 20mm (3/ $^{\prime\prime})$ and Smart® Tie 32mm (11/ $^{\prime\prime})$

Line	Smart® Tie	Material	Steel Tube Ø mm (inch) 120.5 (4.74)	Axial I	Retention
No	Size	Material	mm (inch)	Max Force (N)	Total Movement (mm)
1	00	PA66		1620	35.7
2	20mm — (¾") —	PA12		3047	99
3	(/4)	PPS	120.5 (4.74)	2606	61.2
4	32mm (1¼")	PA12		5119	78.3


Note. Axial Retention varies with the band tension and surface finish of the application.

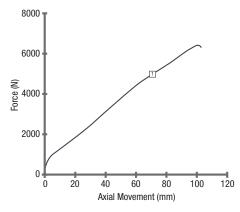
7.2.5] SP-400-5228 with Smart® Tie 20mm (¾") and Smart® Tie 32mm (1¼")

Line	Smart® Tie	Material	Steel Tube Ø	Axial I	Retention
No	Size	Material	mm (inch)	Max Force (N)	Total Movement (mm)
1		PA66		2719	40.4
2	20mm — (3⁄4") —	PA12		3995	109
3	(/4)	PPS	120.5 (4.74)	2551	50.2
4	32mm (1¼")	PA12		6369	90.1


Note. Axial Retention varies with the band tension and surface finish of the application.

7.2.6] SP-500-1721 with Smart® Tie 20mm (¾") and Smart® Tie 32mm (1¼")

Line	Smart® Tie	Material	Steel Tube Ø mm (inch)	Steel Tube Ø Axial Retention			
No	Size	Material	mm (inch)	Max Force (N)	Total Movement (mm)		
1		PA66		4645	71.9		
2	20mm — . (¾") —	PA12		3453	104		
4	(74)	PPS	120.5 (4.74)	TBC	TBC		
5	32mm (1¼")	PA12		4975	87		


Note. Axial Retention varies with the band tension and surface finish of the application.

7.2.7] SP-500-3338 with Smart® Tie 32mm (11/4")

Line	Smart® Tie	Material	Steel Tube Ø	Axial	Retention
No	Size	Material	mm (inch)	Max Force Total Movem (N) (mm)	Total Movement (mm)
1	32mm (1¼")	PA12	120.5 (4.74)	6471	100

Note. Axial Retention varies with the band tension and surface finish of the application.

8] Roller Testing

Roller testing is carried out on bespoke test equipment that replicates the action of the rollers (Stingers) used in "S" lay pipe deployment.

A test pipe fitted with Smart[®] products is passed under rollers that have been set to apply a controlled force to the pipe and associated Smart[®] products.

Test Pipe – Ø620mm including a 3LPP coating.

Rollers – Ø540mm including a PP coating (90 Shore A Hardness) of 61mm thick. A vertical force of up to 100 Tonnes is applied through the rollers. The pipe is cycled forward and back under the rollers.

Product	Loading	 No of Cycles 	Pass/Fail	
Flound	KN		F 855/1 all	
19mm (¾") Smart® Band	1000	70	Pass	
32mm (1¼") Smart® Band	1000	70	Pass	
19mm (¾") Smart® Band Hybrid Buckle	1000	12	Pass	
19mm (¾") Smart® Band Hybrid Buckle	300	50	Pass	

Note. Wherever possible it is best practice to locate the buckle of the Smart Band system away from the rollers.

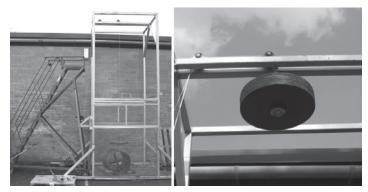
Figures above are based on tests carried out on product manufactured from PA12GF Material.

🔊 9] Impact Strength

Impact strength is of particular interest in the use of HCL Smart[®] products. Whether it is a downhole, subsea or a topside application there is a good chance that Smart[®] products will encounter considerable impact at times.

The following data is derived from various tests involving dropping a known weight from a known height.

The standard energy equation - Energy (Joules) = mgh is applied where:


 $m=Mass~(Kg) \qquad g=Gravity~9.81~(m/s^2) \qquad h=Height~(m)$

9.1] Smart[®] Band Impact Strength

The weight is adjusted accordingly to set the correct impact energy but the bottom impact area of the weight is always 100mm (4 inches) in diameter.

Size/Component	Material	Maximum Impact Energy Without Loss of Integrity or Tension J			
19mm (¾") Band	DATOOF	5000+*			
19mm (¾") Hybrid Buckle	PA12GF	5000+*			
32mm (1¼") Band	DATOOF	5000+*			
32mm (11/4") Hybrid Buckle	PA12GF	5000+*			

*The material maintained integrity after impacts of maximum possible energy from apparatus used 176Kg x 9.81 m/s² x 2.91m = 5000 Joules (2 sig fig).

9.2] Smart[®] Protector Impact Strength

The rig-floor durability of the SP-300 in PA66 material was testing using an impact rig setup as shown below. The maximum height and weight which the moulding survives indicated the sustainable impact energy level.

The impact testing was conducted using an impactor of a variable weight, dropping it from various heights. Runs progressively reduce both factors until the Smart® Protector survives the impact. Note that the test is conducted using purely the protector alone (to simulate rig-floor use) and therefore does not contain an insert such as an ESP cable that would give it more impact strength if in downhole use.

	Drop Height (mm)	Weight (kg)	Impact Energy (J)	Result
Test 1	4470	2.34	103	Failure - fractured
Test 2	3080	2.66	80.3	Slight bruising
Test 3	4080	2.66	106	Slight bruising

10] Half Shell Minimum Bending Radius

Due to a dynamic environment, umbilical's and risers are often subjected to aggressive bending.

The test Minimum Bend Radius (MBR) is usually a few metres but to ensure absolute compliance and to give a good safety factor, they are often subjected to a much tighter radius.

Smart[®] Band has been well proven to stand an MBR of less than one metre for this type of application.

Photo courtesy of Lankhorst/Mouldings BV 19mm/¾" Smart® Band PA11GF clamped on a UraGUARD Half Shell Test Minimum Bend Radius: 0.68m Water depths: 600m to 1200m

Final Installation Location: West Coast of Angola

) 11]Piggyback Pipe Lay

11.1] Smart[®] Band Piggyback Performance

The following tests were carried out to obtain the performance of Smart[®] Band 32mm (1¼") PA12GF Hybrid system when used in a Piggyback block Pipe Lay application. During the tests a Piggyback block arrangement was loaded with radial, axial and lateral forces. For axial and lateral loading, the movement of the saddle was measured relative to the carrier pipe; for radial loading, the system break strength was recorded.

11.1.1] Tool Tightening Forces

Descurrentia Tisktenia a Test Ture	Air Pressure	System Retention
Pneumatic Tightening Tool Type –	MPa (Bar) [psi]	N (Kg) [lbs] 6200 (632) [1390] 9000 (918) [2023]
32mm (1¼") Steel Strap – Signode PRHR-1141	0.6 (6.0) [87]	6200 (632) [1390]
32mm (1¼″) Smart® Band PA12GF – SM-FT-3000-32	0.55 (5.5) [80]	9000 (918) [2023]
32mm (114″) Smart® Band PA66* – SM-FT-3000-32	0.55 (5.5) [80]	13500 (1377) [3055]
1 For comparison purposed only		

1 For comparison purposes only

*Smart® Band PA66 is suitable for initial installation loadings but after a number of months subsea it should be expected that the retention will drop off due to the hygroscopic nature of the material

11.1.2] Test Results

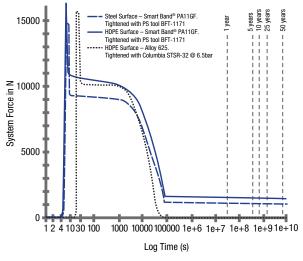
			32mm (1¼") Smart® Band			
			PA66x2 PA12G	Fx1 – 3 Straps		
Loading		Pipe Diameters	Loading (kN)	Loading (kN)		
Direction	Saddle Type	mm (inch)	At Point of Movement	After 50mm Movement		
Axial	Rubber	600 + 120 (24 + 5)	11.5	22.6		
Lateral	Rubber	600 + 120 (24 + 5)	10.0	16.0		
Radial	Rubber	600 + 120 (24 + 5)	50+²	50+ ²		

² System survived maximum force of 50KN+ to the limit that the tensile test machine could achieve. Note: It should be noted that these tests were only carried out in the particular arrangements above and that clients should carry out their own tests, as Piggyback arrangements vary from application to application. For further test information please contact HCL.

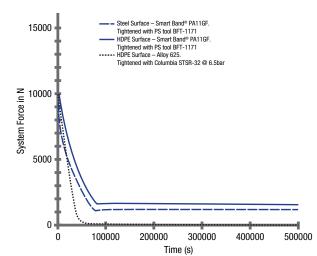
12 Hydrostatic Compression

In deep water applications hydrostatic compression is a factor that needs to be taken into account when objects are clamped. In applications such as strake, cable/riser protection, insulation and buoyancy the high pressures in deep water have a crushing effect on the material causing the overall diameter to reduce. The strapping solution needs to be able to take up the reduction in diameter to give continual retention to the object being clamped.

Smart[®] Band is better suited to cope with Hydrostatic Compression when compared with traditional steel strapping solutions because of its lower strap stiffness. Strain is higher under tension than steel and so as compression takes place, band tension reduces less than steel which will lose tension quickly as compression takes place.


12.1] Typical Hydrostatic Compression Test Simulation

The following graphs give an example using 32mm Smart[®] Band PA11GF around a 353mm diameter half shell arrangement.


The two steel half shells have a polyethylene surface to simulate a polyethylene strake. The Smart® Band is tightened using a calibrated SM-FT-1000 tool. Over a period of 24 hours the diameter is reduced by 2.7mm to simulate the strake being lowered and experiencing hydrostatic compression. The system is then left for 10 days to determine any creep that might take place. On the graph, log time has been extrapolated to give the estimated retention over many years.

Note: The polyethylene surface is smoother than the steel surface and so friction does not have as much effect. The initial tension is therefore higher at around 10%.

12.1.1] Retention Force (N) against Log Time (s)

12.1.2] Retention Force (N) against Time (s)

Note: Customer tests can be performed for individual applications

13] Abrasion

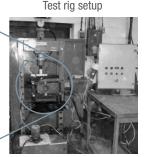
13.1] Polymer Abrasion Comparison

Abrasion resistance is described as the susceptibility to wear caused by the contact of dissimilar surfaces.

Smart® Band has been widely used in offshore applications where abrasion is a factor.

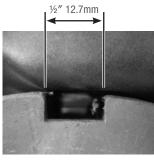
The banding has been proven to withstand abrasive conditions and shock from foreign debris that are often evident near the shore line.

	Description	Standard	PA66	POM	PA12	PA12GF	РК	PPS
	Description	Stanuaru		Dry As Moulded				
Mechan	ical Properties							
Abrasion Resistance	The figures shown are relative to Nylon (PA12). The figure 2.8 indicates that the material is 2.8 times more susceptible to wear than Nylon (PA12).	NFT 46-102	2.8	TBC	1	2	TBC	TBC


13.2] Downhole Smart® Protector Abrasion

The following test rig was used to test the SP-300 in PA66 for abrasion.

The rig is designed to simulate abrasion experienced while running into a cased oilwell with 40ft joint spacings. The joint along the internal face of the casing string is ideally flush, but in the worst case could be 1/2" wide.

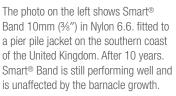

The two images directly below show the hydraulic ram which applies the required side load to simulate well doglegs.

Hydraulic ram applies 2.5 tons sideload against wheel.

The abrasion test was conducted using the worst casing joint gap on the abrading wheel with a constant extreme load running against the moulded parts, as shown in the three images directly below. The wheel was run to simulate a determined number of casing feet and joints. Boiling water was also continuously flooded onto the abrading zone during the test.

Extent of abrasion for Test 1

Note: Water temperature was 100 °C. Linear abrasion speed was 60 ft/min (0.3m/sec)


The results are shown in the table below:

	Casing Distance ft	No of Joints	Side Loading ton	Description	Result
Test 1	38,400	960	2.5	SP-300, PA6.6	Minor surface wear
Test 2	6,600	165	2.5	SP-300, PA6.6 soaked in	Minor surface wear

Smart[®] Band has been well proven in applications such as pile wrapping where marine growth is a common factor. The integrity of the buckle and band is not compromised by marine growth and the banding remains permanently tight in this aggressive environment.

The photo on the left shows Smart[®] Band 25mm Low Profile Buckle* system fitted to a pile jacket in Western Australia 2009. The second photo on the right shows the same pile after 5 years. Smart[®] Band is still tight and holding firm in spite of the significant barnacle growth and wave action over this time.

*Please note that the 25mm Low profile buckle system has now been superseded by the superior Smart® Band hybrid buckle system in 19mm and 32mm widths.

The following information gives maximum and minimum temperature recommendations for the Engineering polymers used in the production of the Smart[®] product range. It should be noted that as temperatures increase, mechanical properties generally reduce.

It is important that full well tests are carried out to ensure suitability for applications especially where raised temperatures are an issue. There may also be other chemicals in the vicinity that can adversely affect the performance of the polymers especially at higher temperatures and should be considered when specifying Smart[®] products. In aggressive high temperature environments it is recommended to select either flexible PPS or PEEK as the base polymer.

The data on flammability gives UL94 ratings for the different polymers. With the introduction of flexible PPS and PEEK the Smart[®] product range now boasts VO rated flammability.

	Description S			PA66		PA12 Dry As Moulded	PA12GF Dry As Moulded		PPS	PEEK
		Standard	Units	nits Dry As Moulded	POM			РК		
Temperature Recomm	endations									
Working Temperature										
Minimum °C	– General guidelines on permissable		°C (°F)	-30 (-22)	-30 (-22)	-40 (-40)	-40 (-40)	-40 (-40)	-40 (-40)	-60 (-76)
Maximum Continuous* °C	application temperatures		°C (°F)	125 (257)	95 (203)	100 (212)	110 (230)	125 (257)	175 (347)	250 (482)
Occasional Peaks °C			°C (°F)	160 (320)	130 (266)	130 (266)	135 (275)	160 (320)	200 (392)	280 (536)
Thermal Properties										
Melting Point	The temperature at which the Polymer melts, i.e. turns from a solid to a liquid	ISO 11357	°C (°F)	260 (500)	165 (329)	178 (352)	178 (352)	220 (428)	280 (536)	343 (649)
Heat Deflection Temperature	A maggura of abort tarm boat									
1.82 MPa	 A measure of short-term heat resistance. A test specimen is loaded in a 3-point bending configuration, then heated until a specified deflection is reached 	ISO 75	°C (°F)	70 (158)	95 (203)	45 (113)	160 (320)	85 (185)	103 (217)	160 (320)
0.45 MPa		ISO 75	°C (°F)	200 (392)	156 (313)	115 (239)				/
Vicat Softening Temperature	 The temperature at which a flat- 									
50N	ended needle penetrates a test specimen to a depth of 1mm under	ISO 306	°C (°F)	236 (457)		154 (309)	170 (338)		225 (437)	/
10N	 a specified load 	ISO 306	°C (°F)	255 (491)	160 (320)	166 (331)			270 (518)	/
Coefficient of Linear Thermal Expansion										
2mm - Parallel, 23°C - 55°C	A measure of the change in size of an object as its temperature changes	ISO 11359	10 ⁻⁵ mm/ mm/°C	1.1	10	1.2	0.2		8	4.95
2mm - Normal, 23°C - 55°C		ISO 11359	10-₅ mm/ mm/°C	1.2		1.4	1.5		8.5	4.92
Flammability										
Flame Resistance (0.75 - 3.0mm Thickness):	Flammability Ratings Defined: V-2 burning stops within 30 seconds on a vertical specimen; drips of flaming particles allowed. V-0 burning stops within 10 seconds on a vertical specimen; drips of particles allowed as long as they are not enflamed. HB: slow burning on a horizontal specimen; burning rate < 76 mm/min for thickness < 3 mm or burning stops before 100 mm	UL 94	Class	V-2	HB	HB	HB	HB	V-0	V-0

*Stated temperatures are based on the tensile half-life, e.g. elongation, of the material measured in a controlled environment. Other factors, e.g. the presence of chemicals, may significantly reduce this value

16] Material Properties 16.1] Polymer Mechanical Properties

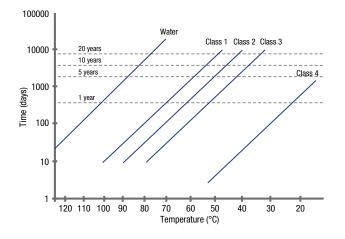
	Description	Standard	Units
Physical Properties			
Density	Mass per Volume, also known as 'Specific Gravity'. The units $g/cm^3 = g/ml$	ISO 1183	g/cm ³ (oz/inch ³)
Water Absorption at 23°C:	The mass of water absorbed from the atmosphere as a % of the total mass:		
24 hours at 50% RH	- 24 hours after moulding.	ISO 62	%
Equilibrium at 50% RH	- When an equilibrium (constant quantity) is reached.	ISO 62	%
Mechanical Properties			
Tensile:	Material properties exhibited whilst under tension. A test specimen is held at both ends and loaded so that the specimen is stretched under tension.		
Modulus	A measure of the stiffness of a material during elastic (non-permanent) deformation. Tensile Modulus = Tensile Stress / Tensile Strain = (Force / Area) / (Increase in Length / Original Length)	ISO 527	MPa
Strength at Yield	The Stress (Force per Area) required to yield a test bar, i.e. to cause plastic (permanent) deformation	ISO 527	MPa
Strength at Break	The Stress (Force per Area) required to break a test bar	ISO 527	MPa
Elongation at Yield	The % increase in length of a test bar at the Yield point, i.e. at the onset of plastic (permanent) deformation. Elongation = Strain x 100 $$	ISO 527	%
Elongation at Break	The % increase in length of a test bar at the break point, i.e. when the material fractures. Elongation = Strain x 100	ISO 527	%
Flexural:	Material properties exhibited whilst under flexure (bending). A test specimen is supported at both ends and a load applied at the mid-point of the specimen in order to cause 3-point bending.		
Modulus	A measure of the stiffness of a material during elastic (non-permanent) deformation. Flexural Modulus = Flexural Stress / Flexural Strain = {(3 x Force x Length) / (2 x Width x Height ²)} / {(6 x Deflection x Height) / (Length ²)} = (Force x Length ³) / (4 x Width x Height ³ x Deflection)	ISO 178	MPa
Strength	Also known as 'Modulus of Rupture' or 'Bend Strength'. The Stress required to break a test bar through 3-point bending.	ISO 178	MPa
Impact Resistance:	The relative susceptability to fracture under stresses applied at high speeds.		
Charpy at +23°C (73°F)		ISO 179	kJ/m²
Charpy at -30°C (-22°F)	The energy required to fracture a sample held in a 3-point bending configuration.	ISO 179	kJ/m²
Charpy at -55°C (-67°F)		ISO 179	kJ/m²
Charpy notched at +23°C (73°F)		ISO 179	kJ/m²
Charpy notched at -30°C (-22°F)	The energy required to fracture a notched sample held in a 3-point bending configuration.	ISO 179	kJ/m²
Charpy notched at -55°C (-67°F)		ISO 179	kJ/m²
Electrical Properties			
Dielectric Strength (step-by-step) 3.2mm	The voltage required to produce dielectric breakdown of the material, i.e. the maximum voltage the material can insulate per unit thickness.	DIN IEC 60243	kV/mm
Volume Resistivity 3.2mm	The resistance to the flow of electric current through the body of a material.	DIN IEC 60093	x10 ¹¹ ohm-m
Surface Resistivity 3.2mm	The resistance to the flow of electric current along the surface of a material.	DIN IEC 60093	x1012 ohm
Comparative Tracking Index 3.0mm	The voltage which causes tracking after 50 drops of 0.1% ammonium chloride solution have fallen on the material. The results of testing at 3 mm thickness are considered representative of the material's performance in any thickness. Tracking is an electrical breakdown on the surface of an insulating material. A large voltage difference gradually creates a conductive leakage path across the surface of the material by forming a carbonized track.	DIN IEC 60112	V

P	466		PA12		PA	12GF	I	РК		
Dry As Moulded	Conditioned (50% RH)	РОМ	Dry As Moulded	Conditioned (50% RH)	Dry As Moulded	Conditioned (50% RH)	Dry As Moulded	Conditioned (70°C @ 62% RH)	PPS	PEEK
1.14 (0.66)		1.41 (0.82)		1.01 (0.58)	1.25 (0.72)		1.24 (0.72)		1.25 (0.72)	1.30 (0.75)
1.1									0.03	0.1
2.4		<0.25		0.7		0.6			0.05	0.1
3000	1400	2550	1600	1100	6700	6000	1400	1400	2300	4000
83	66			40					58	104
		63	50	50	120	105	60	60	55	65-75
4.5	25			12					7	5.0
25	105	60		>50		8	>300	>300	25	10-20
2900	1350	2600	1350	1100	5500	5000	1600	1200	2300	3900
86	22	88	60	45	170	150	60	60	75	134
00		00	00	45	170	150	00	60	75	134
No break				>100		80	No break	No break	No break	No break
				>100		80	No break	No break		
No break									80	No break
6.6				7		20	15	415	15	5.5
5.3		9		6		15	4.5		8	
										4.9
20						35			13	15.1
400				10		1	100	0.1	650	3.8
						1	10	0.01	3000	>1,9
400-599						600			125	150

16.2] Glass Fibre Yarn - Ø1mm Material Properties

	Description	Units	Description
Physical Properties			
Density	Mass per Volume, also known as 'Specific Gravity'. The units $g/cm^{\rm s}=g/ml$	g/cm ³ (oz/inch ³)	2.60 (1.50)
Moisture Content (ISO 3344)	Moisture content lost after drying at 105°C	%	0.70
Mechanical Properties			
Tensile:	Material properties exhibited whilst under tension. A test specimen is held at both ends and loaded so that the specimen is stretched under tension.		
Strength at Break	The Tensile Strength of an individual yarn at the Break point, i.e. when the material fractures	Ν	960
Elongation at Break	The % increase in length of an individual yarn at the break point, i.e. when the material fractures. Elongation = Strain x 100	%	2
Thermal Properties			
Melting Point	The temperature at which the Glass melts, i.e. turns from a solid to a liquid	°C (°F)	750 (1382)
Flammability			
Loss on Ignition	The mass of material lost following ignition (volatile substances are burned off)	%	1

17] Chemical Resistance


Please note that in the past HCL have supplied Smart® Band and Smart® Tie in PA11 but in recent years this has been superseded by PA12. Compared with PA11 the chemical resistance data is relatively limited for PA12 however they are widely regarded as being very similar in terms of chemical resistance performance. Chemical resistance data is more available for PA11 and so for the purposes of giving information and comparison, PA11 data has been published in the following sections 17.1] and 17.2].

17.1] Chemical Resistance Overview

17.1.1] PA11

Note: For the purpose of comparison it is interesting to look at the chemical resistance data for PA11 and PA12. This provides relevant performance information and indicates why PA12 is regarded as being nearly equivalent to PA11.

The material absorbs very little moisture, which allows for good dimensional stability of manufactured parts. It has excellent impact strength and is very resistant to abrasion. Resistance to oil based compounds, solvents and salt water is generally considered excellent.

Chemical	Liquid Base	Functions	Compatibility Class
oxypropylated and/or oxyethylated alkylphenols "non ionic surfactants"	hydrocarbon, water/ glycol	demulsifier	< water
ethylene oxide/propylene oxide copolymers	hydrocarbon	demulsifier	< water
glycol esters	hydrocarbon	demulsifier	< water
fatty amines	hydrocarbon, water, water/glycol	corrosion inhibitor	class 1
imidazoline derivatives	hydrocarbon, water, water/glycol	corrosion inhibitor	class 1
sulphite derivatives	water, water/glycol	corrosion inhibitor	class 2
bisulphite salts	water	oxygen scavenger	class 2
quaternary ammonium salts, "quats", ammonium salts	water, water/glycol	biocides	< water
aldehydes	water, water/glycol	biocides	class 2
polyacrylates	water, water/glycol	paraffine inhibitors scale inhibitors	class 1
organic phosphonates	water, water/glycol	scale inhibitors corrosion inhibitors	class 3
organic sulfonates	water, water/glycol	scale inhibitors corrosion inhibitors	class 3
hydrochloric acid 15%	water	well stimulation	class 4
hydrofluoric acid 15%	water	well stimulation	class 4

"< water" means that the chemical is less aggressive than water.

17.1.2] PA12

The material has virtually identical properties to PA11. See section 17.1.1

17.1.3] PK

Has a good chemical resistance especially with regard to weak acids, which generally corrode polyamides such as PA12 and PA66. Minor discolouration may occur to PK in these conditions but the strength at break remains constant.

17.1.4] PPS

Is essentially unaffected by a broad class of chemicals at elevated temperatures and for prolonged periods of time. In general, the few classes of compounds that may cause some loss of mechanical properties include strong acids, oxidizing agents, and some amines.

17.1.5] PEEK

Is one of the industry's most chemically resistant plastics and offers very high temperature continuous use performance. It is exceptionally resistant to aggressive chemicals such as organics, acids and bases.

17.2] Permeability

Permeability is an important factor to consider when determining the chemical resistance.

All Smart[®] polymers have good permeability properties that make them suitable for use in downhole applications.

17.2.1] PA11

	P (bar)/f (bar)	T (°C)	Permeability cm ³ .cm/ cm ³ .s.bar 10 ⁻⁸	Diffusion cm ² /s 10 ⁻⁷	Solubility cm ³ / cm ³ .bar
CH4	96	99	3.8	7.3	0.05
	99	99	4.4	6.1	0.07
	103	78	2	2.8	0.07
	97	80	2	3.3	0.06
	101	61	0.8	2.6	0.03
	103	61	0.9	2.2	0.04
	102	41	0.4		
	101	60	0.8	2.2	0.03
CO2	40	79	10	4.5	0.22
	39	80	9.4	4.7	0.2
	39	60	4.5	1.9	0.23
	39	61	4.4	2.3	0.19
	41	41	1.5	0.9	0.16
H ₂ S	100/47.5	80	67	7.6	0.88
	103/48	80	66	8.2	0.8
	92/47	80	77	9.2	0.84
	41/33	80	43	4.2	1.04
	40/33	80	38	4.5	0.85

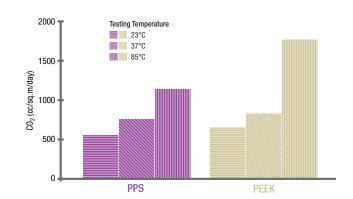
Note: Data taken from Arkema - "Rilsan Offshore Fluids and Compatibility Guide"

Fluid	Conditions	Permeation value/cm ³ .cm/ cm ² .s.bar
CH_4	70°C, 100 bars	9x 10 ^{.9}
CO ₂	70°C, 100 bars	50x10 ⁻⁹
H ₂ O	70°C, 50 to 100 bars	2x10-6 to 7x10-6
H₂S	70°C, 100 bars	1x5x10 ^{.7}
Methanol	23°C, 1 bar	3.7x10 ⁻⁹
Note: Data taken from Arkema – "	Rilsan Offshore Fluids and Compatil	bility Guide"

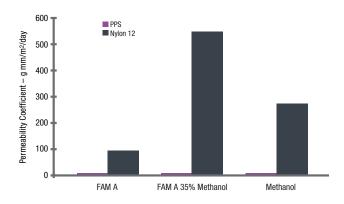
Fluid Permeation value/cm3.cm/cm2.s.bar 70°C, 100 bar 70°C, 25 bar 70°C, 50 bar 70°C, 75 bar 0.53x10-7 1.4x10-7 1.9x10-7 1.8x10-7 CH_4 5.8x10⁻⁷ 2.3x10-7 7.8x10⁻⁷ C02 7.8x10-7 1.9x10⁻⁶ H_2O 3.6x10-6 6.5x10⁻⁶ 3.4x10-6

Note: Data taken from Arkema – "Rilsan Offshore Fluids and Compatibility Guide"

17.2.2] PA12


The material has virtually identical permeability properties to PA11.

17.2.3] PPS


The PPS polymer is relatively impermeable to gases, fuels and other liquids compared to other materials. The combination of low permeability and high chemical resistance makes PPS an excellent material where a high gas barrier is needed.

The following bar graphs illustrate the superior performance of PPS.

17.2.3.1] CO2 Transmission Data (cc/sq.m./day)

Note: Sample thickness was 0.005 inches

*Note: Data taken from Fortron "Protect Against Sour Gas Corrosive Conditions with Fortron® PPS"

17.3] Chemical Resistance Chart

The following Chemical resistance table helps to specify which polymer is most suitable for the desired application:

	Concentra-	PA	466	Concentra-		POM Per	formance		Concentra-	F	PA12	Concentra-		РК	Concentra-	Р	PS	Concentra-	PEEK
Chemical Agent	tion†	Temp °C	Perform-	tion†	unknown	23°C	49°C	82°C	tion†	Temp °C	Perform-	tion†	Temp °C	Perform-	tion†	Temp °C	Perform- ance	tion†	General
Mineral Acids			ance		°C	(73.4°F)	(120.2°F)	(179.6°F)			ance			ance			ance		
Boric acid	7%	24	P	100%	G				10% Aqueous	20	G							-	G
Carbonic acid Chloroacetic acid	10%	24	G	100%	Р	G			10% Pure	20	Р						G		G
Chlorosulphonic acid	10%	24	P	100%	P				10/01/010	20							P		G
Chromic acid -	10%	24	Р	10%	Р				1% Aqueous	20	L	10%			30%	80	G		G
Potassium chromate	0.5%			000/					10% Aqueos	00	Р	4.07	00	0**	100/	00	0		0
Hydrochloric acid	2.5% 5%	23 77	G	20% 37%	G				1% Aqueous 10% Aqueous	20 20	L	1% 10%	23 80	G** G**	10% 10%	23 80	G	37%	G G
	10%	25	P	100%	G				1070 Aqueedas	20		10/0	00	u	36%	00	P	0176	ŭ
				100%		Р													
Nitric acid	10%	23	Р	5-10%		Р			All Concentrations	20	Р	10%			10%		G	<10%	G
				50%	Р										40%		Р	>10%	L
Perchloric acid	10%	24	P	100%	G													>20%	P G
Phosphoric acid	5%	98	Р	100%	Р				10% Aqueous	20	L	5%					G	>40	G
0.1.1	1000/			100%	P				50% Aqueous	00	Р	50%							
Sulphur dioxide Sulphuric acid	100%	38	Р	100%	G	G			<5% Pure	20	L	1%	23	G**	10%	23	G	<10%	G
oupnane acia	3%			30%		P			2% Aqueous		P	10%	80	P*	10%	80	G	>10%	P
	10%								10% Aqueous		Р		23	G**	20%	180	G		
	30%	23	Р						36% Aqueous		Р		80	P*	30%	180	G		
Sulphurous acid	10%	23	Р	100%	G												L		G
Aluminium hydroxide	10%	23	L	10%		G*	-	G*					23	L*				Sol	G
, sammum nyuruxide	10%	52	P	10/0		u		u					80	G*				JUI	u
Alumina sulphate	. = 79			100%	р							Concentrated or		-	Saturated		G	Aqueous (Sat)	G
	10%	23	L									boiled solutions							
Ammonium carbonate	10%	52 23	P	100%	Р				-						Aqueous		G		G
Ammonium chloride	10%	52	P	100%	G				10% Aqueous	20	G				Aqueous		G	Aqueous	G
Ammonium hydroxide	10%	23	G**	100%	G												L	Sol	G
	100%	70	P**																
Ammonium sulphate	100%			100%		G						Concentrated or			Aqueous		G	Aqueous	G
Antimony trichloride	10%	24	Р									boiled solutions			Aqueous		G	Aqueous	G
Barium chloride				100%		G						Concentrated or			Aqueous		G	Aqueous	G
	10%	24	Р									boiled solutions							
Barium sulphate	10%	24	G	100%	G		G								A		G	A	G
Barium Sulphide Calcium arsenate	10%	24	L	100%	G							Concentrated or			Aqueous		ŭ	Aqueous	G
												boiled solutions							
Calcium chloride				100%	Р				10% Aqueous	20	G	Concentrated or			Saturated	80	G	Aqueous	G
Calcium hypochlorite	5% Sat. Sol.	60 35	P	100%	P				20% Alcohol		Р	boiled solutions			Aqueous		Р	Aqueous	G
Calcium thiocynate	50%		P	100%	F				-						Aqueous		F	Aqueous	ū
Copper chloride	10%	24	Р	100%	G										Aqueous		G	Aqueous	G
Copper sulphate				100%	Р							Concentrated or			Aqueous		G	Aqueous	G
0	100/		Р			-			-			boiled solutions						_	
Copper sulphite Di-ammonium phosphate	10%	24	P									Concentrated or							
bi annonani pricopriato												boiled solutions							
Hydrogen sulphide	Sat. Sol.	23	Р	100%	G										Aqueous		L	Aqueous	G
Magnesium chloride				100%		G						50%			Aqueous		G	Aqueous	G
Potassium carbonate	000/	00	0	100%	G							50%			Aqueous		G	Aqueous	G
Potassium chloride	20%	98 23	G	100%	G										Aqueous		G	Aqueous	G
Potassium hydroxide	30%	98	L	100%	G										Aqueous		L	Aqueous	G
Potassium nitrate				100%	G				10% Aqueous	20	G	Concentrated or			Aqueous		G	Aqueous	G
Potassium sulphate				100%	G				10% Aqueous	20	G	boiled solutions Concentrated or			Aqueous		G	Aqueous	G
				10070	u				, o , o riquiduuo	20	u	boiled solutions			, 1400000		4	, 1400000	u
Potassium thiocynate	Sat. Sol.		Р																
Sodium carbonate			-	2%		G			10% Aqueous	20	G	Concentrated or			Aqueous		G	Aqueous	G
	2%	35	G	2%				G				boiled solutions							
Sodium chloride				20% Saturated		G		G	All Concentrations	20	G	Saturated	23	G				Aqueous	G
	10%	23	G	10%				G*				10%	80	G*					
Sodium hydroxide				1%		G			40% Aqueous	20	G		23	G**	10%	23	G	Aqueous	G
(Caustic Soda)	10%	70	P**	10%		G		G*					80	G*					
				10% 60%				G*											
Sodium nitrate	5%	24	G	100%		G		u	10% Aqueous	20	G				Aqueous		G	Aqueous	G
Sodium sulphate	90%	24	G	100%		G			10% Aqueous	20	G				Aqueous		G	Aqueous	G
Sodium sulphide	90%	24	G						10% Aqueous	20	G	Concentrated or			Aqueous		G	Aqueous	G
Sodium thiosulphate				25%		G		G	10% Aqueous	20	G	boiled solutions			Aqueous		G		G
Stannic chloride	10%	24	P**	100%	G	u		u		20	u				, 190000		u		
Stannic sulphate	10%	24	Р						-										
Tricresyl Phosphate	100%	66	G																
Trisodic phosphate												Concentrated or							
moodio proopriato												boiled solutions							
Zinc chloride				100%	G				10% Aqueous	20	L	Saturated			Saturated	80	G	Aqueous	G

*Discolouration occurs. **Swelling action. G = Good. L = Limited. P = Poor. $\pm 100\%$ unless otherwise stated.

	Concentra-	P	A66	Concentra-		POM Per	formance		Concentra-		PA12	Concentra-	F	к	Concentra-	Р	PS	Concentra-	PEEK
Chemical Agent	tion†	Temp °C	Perform-	tion†	unknown	23°C	49°C	82°C	tion†	Temp °C	Perform-	- tion†	Temp °C	Perform-	tion†	Temp °C	Perform-	- tion†	General
Ammonia	Sat. Sol.	-33	G	100%	°C P	(73.4°F)	(120.2°F)	(179.6°F)	10% Aqueous	20	G	Concentrated		ance	anhydrous liquid		P	anhydrous liquid	G
	100%	24	G						Gaseous All						, ,				
Ammonia solution									Concentrations			Liquid or gas						Aqueous	G
Data data data data data data data data	10%	24	Р	1000/								500/							
Potassium carbonate Sodium bicarbonate	50%	24	G	100%	G				All Concentrations	20	G	50% 50%			Aqueous	G		Aqueous	G
Other mineral bodies					-										4				
Agricultural spray solution																			
Bleach (sodium hypochlorite)	5%	23	L	5%		Р							23 80	G* G*	5%	80	L	Aqueous	G
Bromine	100%	24	Р	100%	Р				All Concentrations	20	Р		00	u	liquid pure		Р	liquid pure	Р
Bromine water	25%	23	G**	1000/													0		
Carbonated water Chlorine	100%	23	Р	100%	G				Pure	20	Р				Gas - dry		G	Gas - dry	G
															Gas - wet		P	Gas - wet	P
Oblasias water	Sol.	23	L				-								Liquid - pure		Р	Liquid - pure	Р
Chlorine water	Sui. Sat. Sol.	23	Р																
Chlorox	100%	23	G	100%	Р														
Fluorine				100%	Р										Dry - pure		P	Dry - pure	P
Hydrogen															Wet - pure Pure		G	Wet - pure Pure	G
Hydrogen peroxide	3%	23	G	10%	Р				2% Aqueous	20	Р				0.5%		L	0.50%	G
	5%	43	Р	50%	P				10% Aqueous		P				30%		L	30%	G
Mercury				100% 100%	P				36% Aqueous Pure	20	P G						G		G
Ozone				100%	G				< 1ppm Gaseous	20	G				Wet & Dry		Р	Wet & Dry	L
									Gaseous All		Р								
Oxygen									Concentrations								G		G
Potassium permanganate	5%	23	Р	100%	G				1% Aqueous	20	Р	5%			Aqueous		Р	Aqueous	G
Sea water Sulphur				100%	G				Pure	20	G						G		G
Water				100%		G		G**	Pure	20	G				Distilled		L		G
Organic bases																			
Aniline				Pure				G*,**	Pure	20	L	Pure							G
Diethanolamine Pyridine				100%	G				Pure	20	G	20% Pure			Pure		L	Pure	G
Urea				100%	G				20% Aqueous	20	G							Aqueous	G
Organic acids and anhydride																			
Acetic acid	5%	23	P**	5% 20%	G	G			10% Aqueous 40% Aqueous	20	Р		23 80	G* G*	100%		G	Pure	G
				80%	P				Pure				00	ŭ					
Acetic anhydride	100/			100%	Р				Pure	20	P				Pure		G		
Benzoic acid	10%	23	Р	100%	G				Pure	20	L						G	Aqueous Saturated	G
Butyric acid	10%	24	Р	100%	G				Pure	20	L				Aqueous		G	Aqueous	G
Citric acid	10%	24	Р	10%		G			100/ 1	00	P				Aqueous		G	Aqueous	G
Formic acid		23	P	100%	G				10% Aqueous 40% Aqueous	20	P				Aqueous Pure		G	Aqueous Pure	G
									85% Aqueous		P						-		
Glycolic acid	70%	05	P	100%	G				PA(1	00					Aqueous		G	A	
Lactic acid	10%	35	G	100%	G				5% Aqueous 50% Aqueous	20	L				Aqueous		G	Aqueous	G
									90% Aqueous		P								
Oleic acid Oxalic acid				100%		G		G	Pure	20	G				A		0	A	
Picric acid				Cold 100%	G				10% Aqueous	20	L				Aqueous (Sat)		G	Aqueous (Sat)	G
Stearic acid				100%	G				_								G		
Tartaric acid				100%	G				Pure	20	G				Aqueous		G	Aqueous	G
Uric acid Hydrocarbons																			
Acetylene				100%	G												G		G
Benzene	100%	23	G	100%		G**			Pure	20	G				Pure		L		G
Butane Cyclohexane				100%	G	G			Pure Pure	20 20	G				Gas & Liquid Pure		G	Gas & Liquid Pure	G
Decaline				100 /8					Pure	20	G				1 UIC		u	1 410	u
FORANE® 12 -															100%	100	G		
Dichlorodifluoromethane FORANE® 22																			
R-134a - Tetrafluoroethane				100%		G		G							100%	100	G		
Heptane									Pure	20	G		23	G*	Pure		G	Pure	G
Hexadecane	10%	23	G**	100%	G		-	-					80	G*					
Methane	10 /0	20	u	100%	u	G									Pure		G	Pure	G
Naphthalene				100%		G		G	Pure	20	G								
NUJOL	100%	70	G	Liquified 100%	G				Duro	20	r				Cas 9 Limited		G	Cap 9 Limited	
Propane Styrene				100%	G	G		G**	Pure Pure	20 20	G				Gas & Liquid		u	Gas & Liquid	G
Toluene	100%	50	G	100%	G				Pure	20	G		23	G		80	L	Pure	G
Videne	100%		0						Duro	20	0		80	G*		00	1	Duro	0
Xylene Alcohols	100%		G				-	-	Pure	20	G		23	G		80	L	Pure	G
Benzyl alcohol									Pure	20	Р							Pure	G
Butanol	100%	50	G	100%	G				Pure	20	G					80	G	Aqueous	G
Ethanol	100% 100%	23 50	G** G**	100%		G	G**		Pure	20	G				5%	80	G	Pure	G
Ethylene glycol	50%	23	G	50%				Р							Pure		G	Pure	G
			-			-						-	-			-			

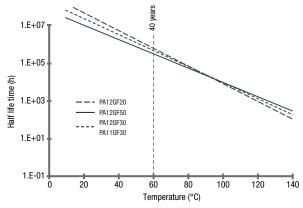
*Discolouration occurs. **Swelling action. G = Good. L = Limited. P = Poor. $\pm 100\%$ unless otherwise stated.

Party let be the party of the part		0	P	A66	0		POM Per	formance			Р	A12	F	ж	0t	Р	PS	0	PEEK	
part </th <th>Chemical Agent</th> <th></th> <th>Temp °C</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Temp °C</th> <th></th> <th>Temp °C</th> <th></th> <th></th> <th>Temp °C</th> <th></th> <th></th> <th>General</th>	Chemical Agent		Temp °C								Temp °C		Temp °C			Temp °C			General	
best be	Glycerin			ance	100%		(73.4°F)	(120.2°F)	(179.6°F)	Pure				ance	Aqueous			Aqueous	G	
Name Name No.										Pure						120			G	
<th a="" bit="" black="" is="" start="" td="" th<="" the="" with=""><td></td><td>100%</td><td>23</td><td>G**</td><td>100%</td><td>G</td><td></td><td></td><td></td><td></td><td></td><td></td><td>23</td><td>L</td><td></td><td></td><td>L</td><td></td><td>G</td></th>	<td></td> <td>100%</td> <td>23</td> <td>G**</td> <td>100%</td> <td>G</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>23</td> <td>L</td> <td></td> <td></td> <td>L</td> <td></td> <td>G</td>		100%	23	G**	100%	G							23	L			L		G
AppendixApp																			G	
Name																60	G		G	
Net of the state of														0.0	10001					
Sorenge Sorenge <td>Acetone</td> <td></td> <td></td> <td></td> <td>100%</td> <td></td> <td>G**</td> <td></td> <td></td> <td>Pure</td> <td>20</td> <td>G</td> <td></td> <td></td> <td>100%</td> <td>55</td> <td>G</td> <td>Pure</td> <td>G</td>	Acetone				100%		G**			Pure	20	G			100%	55	G	Pure	G	
Note:	Acetaldehvde									40% Aqueous	20	L	80	G*	Pure		L	Pure	G	
Books in a state Books in the state Bit is the state Bit					40%			G											L	
witch <td></td> <td></td> <td></td> <td></td> <td>100%</td> <td>G</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Pure</td> <td></td> <td>G</td> <td>Pure</td> <td>G</td>					100%	G									Pure		G	Pure	G	
Watch wereWatch wer																			G	
Market Solver					100%	G				Pure	20	G			100%	58	G	Pure	L	
<th co<="" td=""><td></td><td>100%</td><td>23</td><td>G</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td></td> <td>100%</td> <td>23</td> <td>G</td> <td></td>		100%	23	G															
Alt of the transformAlt of the transform					100%	G				Pure	20	P	 		Aqueous		L	Aqueous	G	
Dependence Description Description <thdescription< th=""> <thdescription< th=""> <</thdescription<></thdescription<>		100%	23	G	-		-			Pure	20	G	 							
Name					100%		G	G**		1010	20	u u			Pure		L	Pure	G	
Nate of the series of the s																				
Marting	Dichloroethane	100%	66	G	100%			G**					23	L	Pure		L	Pure	G	
add add <td></td> <td>100%</td> <td>23</td> <td>Р</td> <td></td>		100%	23	Р																
Watch Watch Watch Watch Watch Watch Watch 															_					
Marker of a strand					100%	G							 		Pure		L	Pure	G	
WindergraphWith with a set of the set of	,				1009	C							 		Dure		1	Dure	L	
Name Tank Tank Tank Tank Tank Tank 		100%	23		100%	u									Fuid		L	Fuið	L	
International part of the series of the s				-	100%	Р							23	L	Pure		L	Pure	G	
BindergenergyUNUNN <td></td> <td></td> <td></td> <td></td> <td>10070</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1 41 0</td> <td></td> <td>-</td> <td>1 01 0</td> <td>9</td>					10070										1 41 0		-	1 01 0	9	
pickale pice <td>Trichloroethane</td> <td>100%</td> <td>72</td> <td>G</td> <td>100%</td> <td>G</td> <td></td> <td></td> <td></td> <td>Pure</td> <td>20</td> <td>G</td> <td></td> <td></td> <td>100%</td> <td>100</td> <td>G</td> <td></td> <td></td>	Trichloroethane	100%	72	G	100%	G				Pure	20	G			100%	100	G			
													80	G**						
		an e -		~		G				Pure	20	Р	 						G	
And GamalySinger<		5%	23	Р	5%		G**								Aqueous (Sat)		G	Aqueous (Sat)	L	
Carbonal of all of the term of term o													 							
Bandors <td></td> <td> </td> <td></td> <td>Pure</td> <td></td> <td>G</td> <td></td> <td></td>													 		Pure		G			
Bachy forma P P P P P P P P P Biner odd S S P P P P P Biner odd S S P P P P P Biner odd S S S S S S S S S S Biner odd S S S S S S S S S S S Biner odd S <		100%	50	L									 		100		4			
figualimage <t< td=""><td></td><td></td><td></td><td></td><td>100%</td><td>Р</td><td></td><td></td><td></td><td>Pure</td><td>20</td><td>G</td><td>23</td><td>L**</td><td>Pure</td><td></td><td>L</td><td>Pure</td><td>G</td></t<>					100%	Р				Pure	20	G	23	L**	Pure		L	Pure	G	
numberNumb													80	Р						
Data base in the set of the set																				
Data data data data data data data data										Pure	20	L								
Binangen 100 107 10 <t< td=""><td></td><td></td><td></td><td></td><td>100%</td><td>G</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Aqueous</td><td></td><td>G</td><td>Aqueous</td><td>G</td></t<>					100%	G									Aqueous		G	Aqueous	G	
2 horsystem 3 horsystem 5 horsystem 6 h		100%	00	C	1009/	C				Duro	20	C	 							
Namp SequenceSupport SequenceSupport SequenceSupport SequenceSupport SequenceSupport SequenceSupport SequenceSupport SequenceSupport SequenceSupport SequenceSupport SequenceSupport SequenceSupport 					100 %	u				FUIE	20	u								
She drama Note Not <td< td=""><td></td><td>100.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td><td></td><td></td><td></td><td>L</td><td></td><td>G</td></td<>		100.0											 				L		G	
Baly look bary pair bary pair bary pair 																				
non-stand with the set of	Amyl acetate	100%	98	Р	100%		G			Pure	20	G			Pure		G	Pure	G	
Deployed Deployed Deployed Termine 	Butyl acetate				100%	G				Pure	20	G	23	G	100%	80	G	Pure	G	
Direly dird<						-							 80	G**						
DampineVertexPare206100%206PareDisc) plonging100%5060100%6PareNOP0PareBing calcular100%5060100%6PareNOP0PareBing calcular100%506100%6-PareNOP0PareBing calcular100%506100%6PareNOP0PareBing calcular100%666NOP0PareDiscipling calcular100%666NOP0<		90%	24	G									 							
Dedy private/s <th< td=""><td></td><td></td><td></td><td></td><td>100 /6</td><td></td><td>u</td><td></td><td></td><td>Pure</td><td>20</td><td>G</td><td> </td><td></td><td>100%</td><td>23</td><td>G</td><td>Pure</td><td>G</td></th<>					100 /6		u			Pure	20	G	 		100%	23	G	Pure	G	
<table-container>Dechy InduiteUnitsInduits<!--</td--><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1010</td><td>20</td><td>ŭ</td><td></td><td></td><td>10070</td><td>20</td><td>4</td><td>1010</td><td></td></table-container>										1010	20	ŭ			10070	20	4	1010		
Bind add defin10%90690%6Pare206100%6PareBind add defin100%6100%6100%6ParePare6PareMely add defin111611 <td< td=""><td></td><td></td><td></td><td></td><td>100%</td><td></td><td>G**</td><td>G**</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Pure</td><td></td><td>G</td><td></td><td></td></td<>					100%		G**	G**							Pure		G			
Methy cachaMethy cachaServe in the serve in the		100%	50	G	100%	G				Pure	20	G					G	Pure	G	
Methy adjutic					100%	G														
<table-container>Subjury: and matrix interval in</table-container>															Pure		G	Pure	G	
<table-container>Increase plonghate100%6666Pure6Macedianous products100%104100%100%PPLAdministe manenision fluid100%100%6Commercial2066Beer100%06Commercial206806Beer100%66G666Beer100%66G666Beer100%666666Code particity100%66666Code particity100%66666Code particity100%66666Code particity100%66666Detarpent100%100%66666Commercial2066666Each100%666666Each100%666666Each100%6666666Each100%6666666Each100%6666666Each100%6666666Each100%6666666<!--</td--><td></td><td></td><td></td><td></td><td></td><td>^</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>D</td><td></td><td>^</td><td></td><td></td></table-container>						^									D		^			
Miscalianous productsPLAntifices10%14L10%PLAntifices10%00Connecial2066Beer10%6Connecial2066Beer HuidGG66Beer HuidG666CadaeG666CadaeG666CadaeG666CadaeG666CadaeG666CadaeG66CadaeG66CadaeG6CadaeG6CadaeG6CadaeG6CadaeGGCadaeGGCadaeGCadaeGCadaeGCadaeCadae <t< td=""><td></td><td>100%</td><td>88</td><td>C</td><td></td><td>b.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		100%	88	C		b.														
Attimuze 100% 104 L 100% P L Automic traininision fluid 100% 6 Commercial 20 6 6 Beer 100% 6 Commercial 20 6 6 6 Brade Fluid 0 6 Commercial 20 6 6 6 Cold que 100% 6 Commercial 20 6 6 6 Cold que 100% 6 Commercial 20 6 6 6 Cold que 100% 6 Commercial 20 6		10070	00	u											i uid		u			
<table-container>Autoratic travenision fluid100%6Commercial Comme</br></br></br></br></table-container>		100%	104	L	100%				Р								L		G	
Beer 100% 6 Commercial 20 6 6 Grade				-									 						G	
							G			Commercial	20	G							G	
<table-container>Oder100%66Cad gas6Cude of6Detergent100%6"6"6Detergent100%6"Commercial206806Part Juice100%66"Grade666Grade00%666666Grade100%666666Grade100%666666Linolin suppresion10%35666666Linolin suppresion10%826100%66<td>Brake Fluid</td><td></td><td></td><td></td><td></td><td></td><td>G</td><td></td><td>G**</td><td></td><td>20</td><td>G</td><td></td><td></td><td></td><td>80</td><td>G</td><td></td><td>G</td></table-container>	Brake Fluid						G		G**		20	G				80	G		G	
Cad gas 6 Dude ol 6* 6 Detergent 100% 6* 6 Diesed 100% 6* Commercial 20 6 80 6 Fruit juice 100% 6 6* Commercial 20 6 6 6 Fruit juice 100% 6<	Cidor				1002	r				Grade			 				0		G	
Dide of I 100% 6" 6 Diesel 100% 6" Commercial 20 6 80 6 Fult juice 100% 6" Grade 6					100%	u													G	
Detergent 100% 6" Commercial 20 6 80 6 Diesel 100% 6"* Commercial 20 6 80 6 Frit Juice																			G	
Diesel 100% 6" Commercial 20 6 80 6 Fruit Juice					100%				G*										G	
Fnuit juice Commercial 20 6 Grande								G**		Commercial	20	G	 			80			G	
Grade Gasohol 100% G G Grasse 100% G G Karosene 00% G G Landin suspension 10% 35 G C 2,4-D Lindane G G G G Mik 100% 82 G 100% G Commercial 20 G G Mikonologi 100% G Commercial 20 G G G Mutard 100% G G G G G G G																				
Gashol 100% 6 6 Grass 100% 6 6 Krosene 100% 60 6 Landin suspension 10% 35 6 2,4-D Lindare 6 6 Mik 10% 6 6 Mik 10% 6 6 Grande Mik 10% 6 Grande Mik Grande Mik Grande Mik Grande Mik Grande Mik Grande Mik Grande Mukard 10% 6	Fruit juice										20	G					G		G	
Grase 100% 6 6 Kerosene 100% 6 60 60 Lanolin suspension 10% 35 6 50 60 2.4-D Lindane 100% 82 6 100% 6 50 Mick 10% 6 6 6 6 Mick 10% 6 6 6 Michare 10% 6 6 6 Mick 10% 6 6 6 Michare 10% 6 6 6	Gasobol				100%		C	C		Grade										
Karssene 100% 6 60 6 Lanolin suspension 10% 35 6 5 <							u	u	G				 				G		G	
Lanolin suspension 10% 35 6 2,4-D Lindane																60			G	
2,4-D Lindane Linseed Cake 100% 82 6 100% 6 6 Mik 100% 6 Commercial 20 6 Grade Motroli 6 6 6		10%	35	G					-				 				-			
Milk 100% G Commercial 20 G G Grade Motor oil 100% G G 80 G Mustard 100% G V V S S																				
Grade Motor oil 100% 6 6 80 6 Mustard 100% 6 </td <td>Linseed Cake</td> <td>100%</td> <td>82</td> <td>G</td> <td>100%</td> <td></td> <td></td> <td></td> <td>G</td> <td></td>	Linseed Cake	100%	82	G	100%				G											
Motor oil 100% 6 6 80 6 Mustard 100% 6	Milk				100%	G				Commercial	20	G					G		G	
Mustard 100% G										Grade										
							G		G				 			80	G		G	
raphilia 100% 30 U 100% 3		100%	00	C**		G	0						 						G	
	wapituld	100%	ЭЦ	u -	100%		u						 						u	

*Discolouration occurs. **Swelling action. G = Good. L = Limited. P = Poor. $\pm 100\%$ unless otherwise stated.

Chemical Agent	Concentra-	P/	166	Concentra-		POM Pe	rformance		Concentra-	P	A12	Concentra-	F	к	Concentra-	Р	PS	Concentra-	PEEK
chemical Agent	tion†	Temp °C	Perform- ance	tion†	unknown °C	23°C (73.4°F)	49°C (120.2°F)	82°C (179.6°F)	tion†	Temp °C	Perform- ance	tion†	Temp °C	Perform- ance	tion†	Temp °C	Perform- ance	tion†	General
Oil							. ,	. ,	Commercial	20	G					60	G		G
									Grade										
Oxyquinoleine																			
(agricultural spray)																			
Premium grade gasoline				100%			G**		Commercial	20	G						G		G
									Grade										
Regular grade gasoline				100%			G**		Commercial	20	G					80	G		G
									Grade										
Soap Cleanser				100%				G**											
Stearine																			
Turpentine				100%			G												
Vinegar				100%	G				Commercial	20	L								G
									Grade										
Wine									Commercial	20	G						G		G
									Grade										

*Discolouration occurs. **Swelling action. G = Good. L = Limited. P = Poor. +100% unless otherwise stated.


18.1] Ageing in Water (pH7)

Water is the critical chemical medium for Polyamides (such as PA12). Deionised water (pH = 7) does not contain salts (such as Sodium Chloride), so the probability of chemical interaction between the water molecules and the amide groups is maximised. Salt water contains salts which do not interact with the Polyamide. The salts bind a certain amount of water by forming a shell of water molecules around each salt ion. The presence of salts therefore reduces the speed of the water absorption of the Polyamide and therefore the effects of ageing.

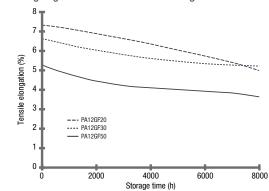
18.1.1] Ageing Comparison for PA12 Material (PA12GF against PA11GF)

Traditionally PA11 has been used in many subsea applications and has been well proven to resist subsea environments. In recent years PA12 has become very effective in replacing PA11 for many applications including oil and gas. The following graph gives a direct comparison between the two materials showing that the ageing of each polymer in water is very similar. For this application it can therefore be determined PA11 applications can be substituted for PA12.

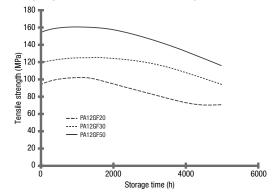
Prediction of half life time, intermediate results

Note

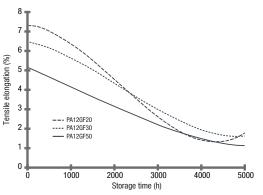
Graph lines are extrapolated from pertinent high temperature test data.
 50% of the initial fracture value is defined as the half life time.
 At 60°C a half life time of 40 years is expected for polyamide 12.

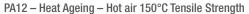

18.2] Hot Ageing in Air

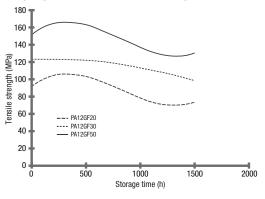
18.2.1] PA12

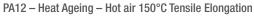

High temperature applications can have a detrimental effect on polymers producing accelerated oxidization of the polymer. PA12 is very resistant to this type of degradation and the following graphs give results for tensile strength and elongation for 110, 130 and 150°C air temperatures.

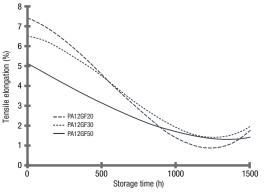
180 160 140 (BU 120 00 the strength (Tensile : 60 ---- PA12GF20 ---- PA12GF30 40 - PA12GF50 20 0 8000 2000 6000 4000 n Storage time (h)

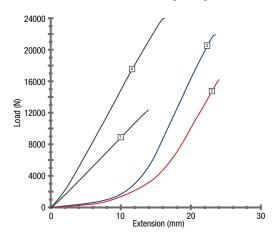







PA12 – Heat Ageing – Hot air 110°C Tensile Strength

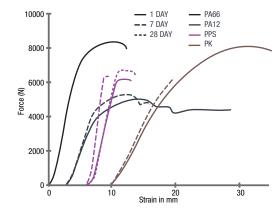

PA12 - Heat Ageing - Hot air 130°C Tensile Elongation



18.3] Fresh Water Immersion

It is generally considered that hygroscopic saturation occurs within 6 months of water submersion. Smart[®] Band 32mm samples were immersed in fresh water for at least 8 months and then tested to determine the effects of moisture absorption on Tensile strength. A PA11GF result is included to give a direct comparison with PA12GF

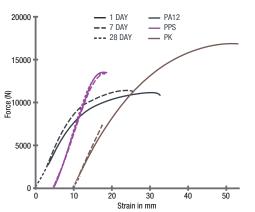
Line	Band	Band	Break Strength	Water Absorption Time
No	Size	Material	N (kgf) [lbf]	Months
1	19mm (¾″)	PA12GF	12339 (1258) [2774]	36
2		POM	16700 (1702) [3745]	8
3	32mm (1¼″)	PA11GF	20720 (2112) [4647]	8
4	(.,.,)	PA12GF	23836 (2431) [5359]	36


18.4] Oil Immersion – (Mineral Oil – Isovoltine at 110°C)

18.4.1] Smart® Tie 20mm

The following products were immersed in mineral oil for different periods of time. They were removed and allowed to cool to 20°C and then tested for system tensile strength.

		System Tensile Strength at Break Strength
Material	Days	N (kgf) [lbf]
	1	8374 (854) [1883]
PA66	7	FAILED*
	28	FAILED*
	1	4983 (508) [1120]
PA12	7	5261 (536) [1183]
PAIZ	28	FAILED*
	1	6189 (631) [1391]
PPS	7	6354 (648) [1428]
	28	6681 (681) [1502]
	1	7329 (747) [1647]
PK	7	5630 (574) [1266]
	28	FAILED*


"Where the result is classed as "Failed" it is where no tensile test was carried out. The product failed during fitting to the test diameter.

Note: Curves offset along x-axis in 2.5mm intervals for clarity

18.4.2] Smart® Tie 32mm

	Days	System Tensile Strength at Break Strength	
Material		N (kgf) [lbf]	
PA12	1	9999 (1020) [2248]	
	7	10263 (1047) [2307]	
	28	2489 (254) [560]	
PPS	1	12101 (1234) [2720]	
	7	12123 (1236) [2725]	
	28	12009 (1225) [2700]	
РК	1	15054 (1535) [3384]	
	7	6310 (643) [1419]	
	28	1274 (130) [286]	

Note: Curves offset along x-axis in 5mm intervals for clarity Refer to 17.2.3.2] Fuel permeability 60°C, 4Bar for further information relating to the PPS material's suitability for use with oils and fuels due to very low levels of permeability. Where applications involve immersion in hot oil and fuel, PPS is the recommended material choice.

18.5] CO₂ (Carbon Dioxide), H₂S (Hydrogen Sulphide) and NORSOK M-710

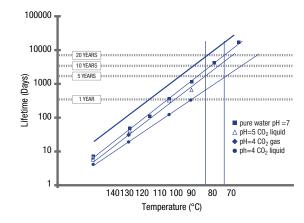
Acidic (sweet) gas and Sour gas are often associated with geologigal drilling operations in the exploration and production sector of the oil and gas industry. This section deals with the resistance to CO₂ acidic (sweet) gas and H₂S sour gas.

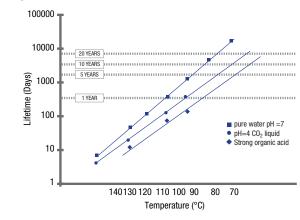
The presence of these gases can create a hostile environment and have a detrimental effect on downhole hardware. The polymers selected for Smart[®] Protector and Smart[®] Tie have good resistance to these gases. The resistance increases in order of the polymer choice i.e. PA66, PA12 & PA11, PK, PPS and with PEEK having the best resistance.

Although there is not as much data available for the resistance of PA66 to sour and sweet gas the general chemical resistance at room temperature to CO_2 and H_2S is classed as good.

However where there are concerns about the concentration levels of these gases especially at higher temperatures then other polymer options from the Smart[®] products range should be chosen.

Specifically the NORSOK M-710 qualification requires that all sub-components of oilfield equipment must be approved to stated specifications. Specifically, materials are rigorously tested and approved based on numerous criteria such as Explosive Decompression Resistance (EDR), sour and sweet gas ageing, compression set tests, and material property tests.


18.5.1] PA11 and PA12


PA11 shows good resistance to sour and sweet gas environments.

The graphs below give the resistance of the polymers when in contact with $\mathrm{CO}_{\rm 2}$ in various guises.

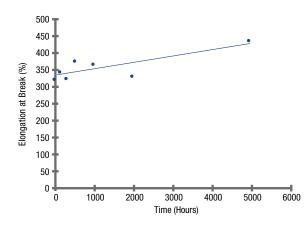
This is data for PA11 but can also be used to give an indication of PA12 performance in similar conditions.

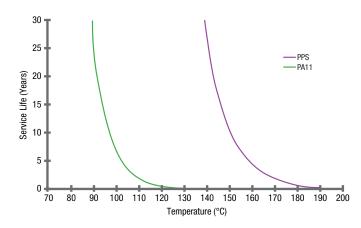
18.5.1.1]

Note: Data taken from Arkema – "Rilsan Offshore Fluids and Compatibility Guide"

18.5.1.3]

18.5.1.2]




Table comparing initial and aged mechanical properties

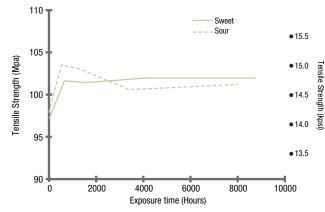
	Elongated at break (%)	Stress at rupture (Mpa)	Stress at yield (Mpa)	Elongation at yield (%)	Tensile modulus (Gpa)
Initial sample	359 ± 48	$42.0\pm3,0$	_	-	2.78 ± 0.008
Aged sample	315 ± 38	$46.7\pm8,\!3$	27.7 ± 0.5	42.4 ± 0.6	2.82 ± 0.02

Note: Data taken from Arkema - "Rilsan Offshore Fluids and Compatibility Guide"

18.5.2] PA11 & PPS

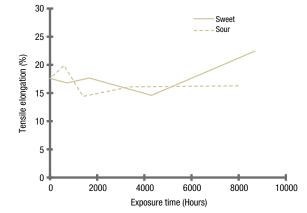
The following graph gives predicted service lifetimes for PPS and PA11 against temperature. The results illustrate the superior performance of PPS and should be the considered material for highly aggressive sweat and sour applications. PA12 regarded as similar to PA11 would not be recommended in applications experiencing high levels of sweat and sour gases.

*Lifetime defined as tensile strength reducing by 50% for PPS elongation reducing by 50% for PA11 Note: Data taken from Fortron "Protect Against Sour Gas Corrosive Conditions with Fortron® PPS"

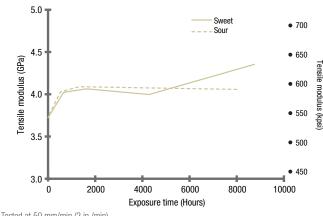

18.5.3] PPS

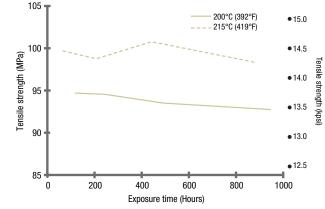
PPS has very good resistance to sour and sweet gases and is covered in section 17.2 where NORSOK M-710 and Permeability data is available.

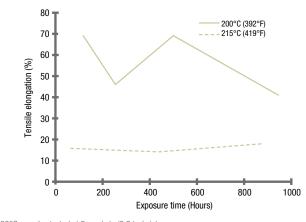
18.5.4] PEEK


Tests have been performed to simulate sour and sweet gas environments. The following graphs show results from tests based on NORSOK M-710 but more aggressive. They show that PEEK has robust performance in sour and sweet environments at concentrations of 20% H2S at 170°C (338°F). They therefore fulfil the NORSOK M-170 acceptance criteria for sour ageing.

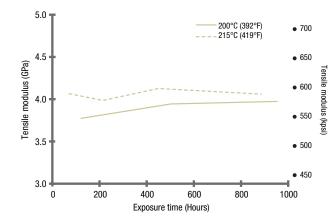
18.5.4.1] Tensile strength of PEEK exposed at 170°C (338°F)⁽¹⁾


(1) Tested at 50 mm/min (2 in./min)


(1) Tested at 50 mm/min (2 in./min)


(1) Tested at 50 mm/min (2 in./min)

18.5.4.4] Tensile strength of PEEK after high temperature ageing in sour environment⁽¹⁾


(1) 200°C samples tested at 5 mm/min (0.2 in./min)

18.5.4.5] Tensile elongation of PEEK after high temperature ageing in sour environment⁽¹⁾

^{(1) 200°}C samples tested at 5 mm/min (0.2 in./min), 215°C samples tested at 50 mm/min (2 in./min)

18.5.4.6] Tensile modulus of PEEK after high temperature ageing in sour environment(1)

(1) 200°C samples tested at 5 mm/min (0.2 in./min),

Note: Data taken from Solvay - "Ketaspire® PEEK Design & Processing Guide"

19 Weathering

When exposed to weathering, polymers have a natural tendency to photo-oxidise and depolymerise to their natural elemental forms. There are variations in natural weathering depending on the intensities of the following components:

- 1. Solar Radiation (UV)
- 2. Moisture
- 3. Heat
- 4. Pollutants e.g. ozone and acid rain
- 5. Salt Water

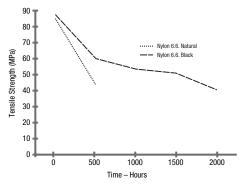
The combination of more than one of these factors can also lead to accelerated degradation and ageing.

^{215°}C samples tested at 50 mm/min (2 in./min)

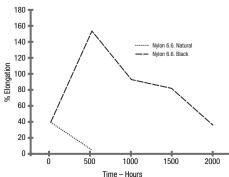
Weathering intensity varies widely around the world, and may also vary from year to year for a given location, depending on weather patterns. Weather in a subtropical climate, such as Florida, may have twice the effect on a polymer as a more northerly location. A drier climate, such as Arizona, may have increased UV radiation, but because of the lower humidity, the effects of weathering on a polymer will not be so severe. It is impossible to give a precise indication of the effects of weathering in a given location, but by using natural outdoor and accelerated tests, certain predictions can be made.

Photo courtesy of Groupe Courbis Location: Malaysia

The carbon black additive in Smart® Band and Smart® Tie products, acts as a very good UV stabiliser. Heat-stabilised grades, usually using a copper based additive, also provide further protection against photo-oxidative degradation by shutting down free radicals. This combination of inhibitors helps to give the polymers many years of life.


Estimated Polymer life expectancy when exposed to weathering

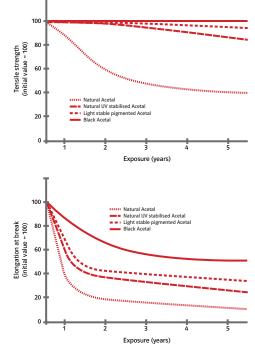
Meteological block	Life in Hot climates	Life in Temperate Climates YRS – Approx	
Materials all black	YRS – Approx		
PA66	10+	15+	
POM	15+	20+	
PA12	15+	20+	
PA12GF	15+	20+	
PA11GF	15+	20+	
PA11	15+	20+	
PPS	10+	15+	
PEEK	5+	8+	


19.1] PA66

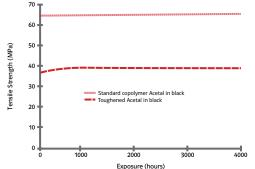
Compared with other polymers, PA66 naturally exhibits a high resistance to weathering and UV degradation, even in its neat state. The graphs below, show the reduction in Tensile strength and Elongation at break of PA66, over a 2000 hour period in a weathering chamber. The accelerated weathering is achieved by wet and dry cycles and continuous UVA (320nm) exposure. The dry cycles last for 8 hours at 70°C, and the wet cycles for 4 hours.

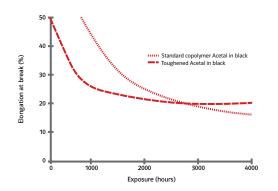
PA66 - Reduction in Tensile strength, due to accelerated weathering

PA66 - Reduction in Elongation at break, due to accelerated weathering


Conclusion

- The degradation caused by weathering, in both the black and natural PA66 tends to reduce the Tensile strength and the Elongation at break of the material over time. This makes the polymer weaker and more brittle.
- The carbon black UV stabiliser gives a huge increase in weathering resistance to PA66.
- It is important to note that the sharp fall in Tensile strength and increase in Elongation at break of Black PA66 from 0 - 500 hours, is largely due to a conditioning effect (taking on moisture). However, the UV degradation that occurs in the natural material during this time is enough to annul the conditioning effect and to reduce the Elongation at break to almost zero.


19.2] POM (Acetal)

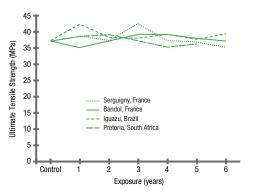

When POM (Acetal) is exposed to UV radiation, a white deposit of degraded material forms on its surface, known as 'chalking'. There is a consequential loss of gloss and change in colour, as well as a deterioration in mechanical properties. The graphs below, show the effects of weathering on the Tensile Strength and Elongation at break of POM (Acetal), through natural weathering and an accelerated test.

Outdoor Weathering Tests - Central European Climate

Accelerated Weathering Tests – Xenotest 1200 Environmental Weathering Chamber

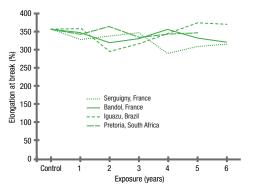
Conclusion

- The degradation caused by weathering, in both the black and natural POM (Acetal) tends to reduce the Tensile strength and the Elongation at break of the material over time. This makes the polymer weaker and more brittle.
- The carbon black UV stabiliser gives a huge increase in weathering resistance to POM (Acetal).


19.3] Weathering Comparison for PA12 and PA11

The following data gives evidence that black PA11 is particularly resistant to degradation from the combined effect of the sun's rays and rain water. Black extruded tubes, 6 inch diameter x 8mm wall thickness; were tested at the following outdoor sites:

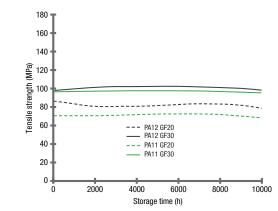
Serquigny, France	Moderate, moist climate. Typical of central Europe.
Bandol, France	Warm, moist climate. Typical of Mediterranean.
Iguazu, Brazil	Tropical climate with high sunlight irradiation.
Pretoria, South Africa	Hot, dry climate.


19.3.1] PA11 - The effect on Tensile strength, due to accelerated weathering

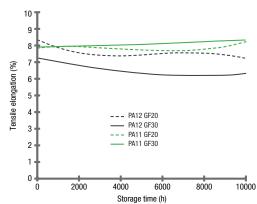
This section gives real life weathering data for PA11 in 4 different parts of the world. Black extruded tubes, 6 inch diameter x 8mm wall thickness; were tested at the following out door sites:

19.3.2] PA11 – The effect on Elongation at break, due to accelerated weathering

This section gives data from comparison tests between PA12 and PA11.

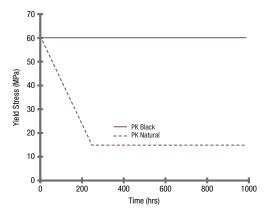

Conclusion

The degradation to black PA11 caused by weathering, can be seen to be minimal during the above tests. This gives great confidence that the life expectancy of PA11 is far longer than the exposure periods shown above. UV weathering tests were conducted on samples of the black PA12 & PA11 materials used to manufacture Smart[®] Band products, according to ISO 4892-2, using a Ci4000 weatherometer. The test conditions were:

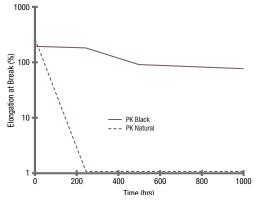

- Irradiance at 340 nm: 0.5 W/m²
- Cycle: 102 min dry/18 min water spray
- Black-standard temperature: 65°C ± 3°C
- Relative humidity 65% \pm 5% .

19.3.3] PA12 - The effect on Tensile strength, due to accelerated weathering

In light of the performance of PA11 in terms of real life weathering outlined in sections 19.3.1] and 19.3.2] it seems reasonable to directly compare PA11 with PA12. The following two sections give a direct weathering comparison between PA11 and PA12 using accelerated test methods. The objective is to prove that PA12 is similar to PA11 and therefore confidence can be gained for using PA12 in long term outdoor applications.


Conclusion

- The weathering resistance of black PA12 and PA11 can be seen to be virtually identical.
- Both black PA12 and PA11 showed minimal changes in properties when subjected to accelerated weathering.


19.4] PK

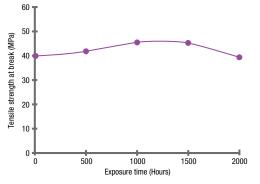
UV Testing was conducted according to ASTM-G154, with cycles of 8 hours UV (UVA-340 Lamp; 340nm; 0,77 W/m²) at 60°C followed by 4 hours condensation at 50°C.

19.4.1] PK - The effect on Tensile strength, due to accelerated weathering

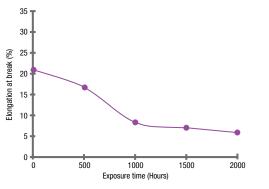
19.4.2] PK – The effect on Elongation at break, due to accelerated weathering

Conclusion

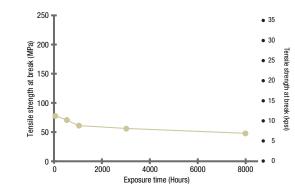
- Black PK has much greater Weathering resistance than natural PK.
- Weathering does not affect the Tensile strength of black PK.
- Weathering causes a slight decrease in the Elongation at break of black PK.


19.5] PPS

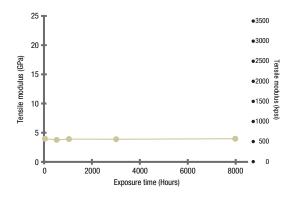
UV weathering of Smart[®] Tie samples was performed according to SAE J1960 to determine effect of mold temperature on Smart[®] Tie properties:


SAE J1960 Weathering Conditions

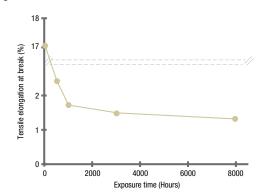
Lamp	Xenon
Wavelength	340 nm
Total Cycle Time	200 min
Light Cycle	120 min light
	60 min dark
Water Spray	80 min spray
	100 min none
Black Panel Temperature	70°C Light Cycle
	38°C Dark Cycle
Humidity	50% Light Cycle
	95% Dark Cycle



Conclusion


- Weathering has a small effect on the Tensile strength of black PPS.
- Weathering causes a significant reduction in the Elongation at break of black PPS.

19.6] PEEK



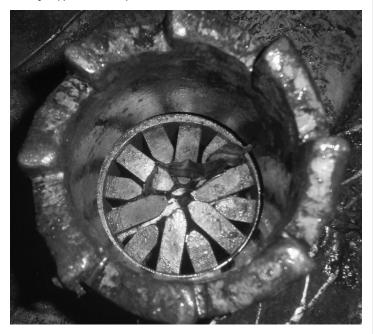
19.6.2] PEEK – The effect on Tensile Modulus, due to accelerated weathering

Conclusion

 PEEK is affected by simulated weathering. The primary effects are yellowing, loss of surface gloss, and a loss of ductility.
 For applications that will be exposed to direct sunlight, it is recommended that parts made of PEEK be painted or pigmented black.

20.1] Advantages of Polymer Products

In extreme conditions it is possible that bands and clamps can be stripped off the downhole tube. This can have a detrimental effect on the well causing damage to pumps and associated equipment. Of particular concern is stainless strapping which is difficult to remove being non-magnetic.


With this in mind Smart® Ties have been successfully used and are more easily flushed out having a density of just over 1 g/cm³.

The following photos show steel strap trapped in a Downhole application:

20.1.1] Trapped Steel Strap in Downhole Tube

20.1.2] Trapped Steel Strap in Downhole Catcher

20.1.3] Density Tables

The following table gives a comparison of densities of typical banding materials that are used. Polymer based banding systems have the advantage of densities that are close to water and therefore can be flushed out more easily should the need arise.

Material	Density	
Material	g/cm ³ (oz/inch) ³	
PA66	1.14 (0.66)	
PA12	1.01 (0.59)	
РК	1.24 (0.72)	
PPS	1.25 (0.72)	
PEEK	1.30 (0.75)	
Carbon Steel	7.85 (4.54)	
Stainless Steel 304	8.03 (4.64)	
	0.00 (+0.+)	

21.2] Quality Control

Where applicable product testing is witnessed and validated by SGS.

SGS are a world leading inspection, verification, testing and certification company with a network of 2600 offices and laboratories worldwide. **www.sgs.co.uk**

HCL Fasteners Limited is committed to the manufacture / supply of plastic and metallic clamping solutions and ancillary products across a wide variety of sectors and markets. Focus will be given to:

- 1) Meeting or exceeding the customers' specified requirements and reasonable expectations.
- 2) Working within the framework of statutory, regulatory and legal requirements.
- 3) Ensuring products sent to customers are correct and arrive in good time and in good condition.
- 4) Managing risks, process inputs and process outputs to ensure consistent products.
- 5) Continually improving, growing and developing the business using a Quality Management System that conforms to the requirements of ISO9001-2015 to ensure consistent quality in all work undertaken.
- 6) Establishing and communicating measureable Quality Objectives that will reflect the company strategy and will be subject to review to ensure ongoing relevance and performance.
- 7) Ensuring that Quality and Continual Improvement are responsibilities for all employees, in every activity, throughout the company.
- 8) Supporting all employees according to their individual needs for personal development, training and resources.

Injection Moulding & Extrusion Control

HCL's banding products are manufactured to the highest standard using the latest equipment and techniques. The injection-moulding and extrusion machines are computer controlled and the settings for each mould tool are recorded for maximum repeatability. Before a production run can begin, the first-off components must be checked and approved against their specification. The machines also have quality control capabilities where parameters, e.g. melt cushion, are given an acceptable tolerance range.

Statistical Process Control

SPC data relating to each manufacturing batch is entered into a computer for dimensional verification and weight checks. The SPC sample and a hard copy of the SPC data are stored for reference and product traceability.

First and Last off samples for each batch of banding products are tested using calibrated Zwick Tensile testing machines, to ensure that they meet the required performance.

Routine Production Checks

Products found to be outside specification are rejected, and the batch concerned isolated. Settings are adjusted until satisfactory yield is achieved and the suspect batch subject to 100% inspection.

Final Inspection

All products are given a final visual and physical inspection during packaging.

If required, a certificate of conformity to HCL's product specification can be issued.

Quality Policy

HCL is committed to the highest possible quality standards. Quality control systems are subject to review at appropriate intervals in consideration of the following:

- a) Changes in technology
- b) Changes to markets
- c) Changes in legislation
- d) External assessor's reports
- e) Overall company facilities & policies

Your attention is drawn to the following:

The statements, technical information and recommendations contained herein are believed to be accurate as of the date hereof. Since the conditions and methods of use of the product and of the information referred to herein are beyond our control, HCL expressly disclaims any and all liability as to any results obtained or arising from any use of the product or reliance on such information; NO WARRANTY OF FITNESS FOR ANY PARTICULAR PURPOSE, WARRANTY OR MERCHANTABILITY OR ANY OTHER WARRANTY, EXPRESS OR IMPLIED, IS MADE CONCERNING THE GOODS DESCRIBED OR THE INFORMATION PROVIDED HEREIN. The information provided herein relates only to the specific product designated and may not be applicable when such product is used in combination with other materials or in any process. The user should thoroughly test any application before commercialization. Nothing contained herein constitutes a license to practice under any patent and it should not be construed as an inducement to infringe any patent and the user is advised to take appropriate steps to be sure that any proposed use of the product will not result in patent infringement.

The information contained in this document is based on trials carried out in our internal laboratory and data selected from other literature, but shall in no event be held to constitute or imply any warranty, undertaking, express or implied commitment from our part. Our formal specifications define the limit of our commitment. No liability whatsoever can be accepted by HCL with regard to the handling, or use of the product or products concerned which must in all cases be employed in accordance with all relevant laws and/or regulations in force in the country or countries concerned.

Visit www.hclfasteners.com to view our complete range of products.

©2020 HCL Fasteners. All Rights Reserved.

HCL – Russia Tel: +7 965 465 88 10 Email: mail@hcl-clamps.ru

www.hcl-clamps.ru

www.beyondmaterials.ru

HCL – North America Tel: 281-717-1145 Fax: 281-717-1146 Email: sales@hcl-clamping.com